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A B S T R A C T  

In this paper a piecewise monotonic map T : X --* R, where X is a finite 

union of intervals, is considered. Define R(T) = N T-'~X. The influence 

of small perturbations of T on the Hausdorff dimension HD(R(T)) of R(T) 
is investigated. It is shown, that HD(R(T)) is lower semi-continuous, and 

an upper bound of the jumps up is given. Furthermore a similar result is 

shown for the topological pressure. 

Introduction 

Let X be a finite union of closed intervals, and consider a piecewise monotonic 

map T : X ---* R, that means there exists a finite partit ion Z of X into palrwise 

disjoint open intervals with Uzez Z = X, such that T I Z is bounded, strictly 
OO - - r t  monotone and continuous for all Z E Z. Set R(T) := Nn=0 T X,  which can 

be considered as the set, where T n is defined for all n E N. We have R(T) = 
NneN Xn, where for n 6 N we define Xn := Nj"=~ T- iX,  which can be considered 

as the set, where T n is defined. We consider the dynamical system (R(T), T), 
and we are interested in the influence of small perturbations of T on the set R(T). 

Such dynamical systems occur in a natural way. If T : [0, 1] ---* [0, 1] is a 

piecewise monotonic map, and L is a maximal topologically transitive subset of 

[0, 1] with htop(L, T) > 0, then there exists an X C_ [0, 1], which is a finite union 
CO __~ 

of intervals, such that L = Nn=0 T X (cf. [2]). 
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The "size" of R(T) can be described in different ways. We consider the topolog- 

ical entropy htop(R(T), T), the topological pressure p(R(T), T, f) of a piecewise 

continuous function ] : X ~ R, and the Hausdorff dimension HD(R(T)). To 

investigate the influence of perturbations of T on these quantities we have to 

introduce topologies for piecewise monotonic maps. A function f : X --* R is 

called piecewise continuous with respect to Z, if f [ Z can be extended to a 

continuous function on Z for all Z E Z. We suppose that Z = {Z1, Z2, . . . ,  ZK} 
with Z1 < Z2 < ".. < ZK. Let X be a finite union of closed intervals, let Z, 

be a finite partition of )( into disjoint open intervals with U2e~ ~ = X, and 

let ] : X --* R be piecewise continuous with respect to .~. Then ] is said to 

be close to f ,  if 2 = {21, Z2, . . . ,  ZK} with ,~1 < 22 < ... < Zg, and if for all 

j E {1,2,. . .  ,K} the graph of f [ 2 i is contained in a small neighbourhood of 

the graph of f I Zj, considered as a subset of R 2 (observe that this definition 

depends on the partitions Z and ,~). Denote by R ° the family of all systems 

(X, T, Z), where T : X --* R is piecewise monotone with respect to Z. Two sys- 

tems (X, T, Z), ()(, T, 2 )  • R ° are said to be close in the R°-topology, if T and 

are close in the sense defined above for piecewise continuous functions. Let W ° 

be the family of all systems (X, T, f ,  Z), where (X, T, Z) • R ° and f is piece- 

wise continuous with respect to Z. We say that (X, T, f ,  Z), (X, T, ] ,  Z) • W ° 

are close in the W°-topology, if they are close in the R°-topology and f and 

] are close in the sense defined above for piecewise continuous functions. Fur- 

thermore let R 1 be all (X, T, Z) • R °, such that T' is piecewise continuous with 

respect to Z. (X, T, Z), ()(, T, ,~) • R 1 are said to be close in the Rl-topology, 

if (X, T, T', Z) and ()(, T, T', Z) are close in the W°-topology. 

Theorem 1 of this paper says, that the pressure function p : W ° --* R is 

lower semi-continuous in (X, T, f, Z) with respect to the W°-topology, if a cer- 

tain condition on f ,  which generalizes p(R(T), T, f )  > supxex f(x), is satisfied. 

Special cases of this result are already known. In [8] this result is obtained for 

systems (T, f) ,  where T is a continuous piecewise monotonic map on [0, 1], and 

f :  [0, 1] ~ R is continuous with sup,el0,1] f(z) < p(T, f). Another special case 

is the well-known result on the lower senti-continuity of htop(R(T), T) in the 

R°-topology (see [6]). In Theorem 2 we show that the jumps up of p : W ° --~ R 

in (X, T, f, Z) with respect to the W°-topology are bounded by the maximum 

of p(R(T), T, f )  and the logarithm of the spectral radius of the matrix G(f) (see 

(2.2) for definition) associated to the graph (~,---*) (defined in Section 2), which 



Vol. 80, 1992 PIECEWISE MONOTONIC MAPS 99 

is defined in terms of the orbits of the critical points under T and which is similar 

to the graph considered in [5]. This is a generalization of the results in [4] and 

[5], where upper bounds for the jumps up of htop(R(T), T) in the R°-topology 

are given. A system (X, T, Z) E R ~ with the property, that there exists an n E N 

with inf~ex, [(T")'(x)I > 1, is considered in Theorem 3. It is shown, that the 

function (X, T, Z)  ~ HD(R(T)) is lower semi-continuous in the Rl-topology, 

and an upper bound for the jumps up in a fixed (X, T, Z)  in terms of the graph 

(G, 4 )  mentioned above, is given (see Section 5). 

The proofs use a graph (:D, ~ ) ,  called Markov diagram, associated to (X, T, Z). 

In Lemma 6 it is shown, that (X, T, Z)  and ()(, T, ,~) have "similar initial parts" 

of their Markov diagrams, if they are close in the R°-topology. In order to use this 

result to derive Theorem 1 and Theorem 2 we have to approximate a function f ,  

which is piecewise continuous with respect to Z,  by piecewise constant functions. 

Lemma 6 remains true, if we replace the partition Z by a suitable refinement 

y .  This implies Theorem 1 and Theorem 2 by Lemma 6 of [7], which says that 

for piecewise constant functions f the pressure p(R(T), T, f) can be obtained 

as the logarithm of the spectral radius of a certain matrix F(f) (see (2.6) for 

definition) associated to the Markov diagram. Then Theorem 3 follows from 

Theorem 2 in [7], which says that HD(R(T)) equals the unique real number tR 

with p(R(T), T,--tR log ]T'I) = 0. 

1. Definitions and notations 

Suppose that X is a finite union of closed intervals. We say that Z is a finite 
partition of X,  if Z consists of pairwise disjoint open intervals with Uzez z = 
x .  A function f : X ~ R is called piecewlse con t inuous  with respect to the 

finite partition Z(f) of X, if f [ Z can be extended to a continuous function on 

the closure of Z for all Z E Z(f). For every x E X at least one of the numbers 

f(x +) := lim~_..,+ f(y) and f (x-)  := l imy_, -  f(y) exist. We assume throughout 

this paper, that for every x E Z we have f(x) = f(x +) or f(x) = f(x-).  A 
function f : X --* R is called piecewlse Constant with respect to the finite 

partition Z(f) of X, if f ] Z is constant for all Z E Z(f). 
A piecewise continuous map T : X --* R is called piecewise monotone, if 

there exists a finite partition Z of X, such that T ] Z is strictly monotone and 

continuous for all Z E Z. We call (T, Z)  a piecewise m o n o t o n i c  m a p  of  

class R °. We assume throughout this paper that Z = {Z1,Zj,... ,ZK} with 
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Z 1 < Z 2 < . . ,  < Z K .  If (T, Z)  is of class R °, then we set E(T)  := {inf Z, sup Z : 

Z e Z}  and El (T)  := E ( T ) \ ( R \ X ) .  E(T)  is the set of al lendpoints  of 

elements of Z,  and El(T)  is the set of all elements of E(T),  which are inner 
oo points of X. Furthermore we define R(T) := Nj=o T JX. We want to remark 

that the elements of E(T)  need not be neither discontinuities nor turning points 

of T. 

If (T, Z)  is a piecewise monotonic map of class R ° and f : X ---* R is a piecewise 

continuous function, then we can assume that Z ( f )  is a refinement of Z. 

Let n • N0 O {co}. (T, Z) is called a piecewise m o n o t o n i c  m a p  of  class 

R n, if (T, Z') is of class R ° and T is piecewise C n. T is piecewise C n means, that 

T (j) is a piecewise continuous function with respect to Z on X for every j • N0 

with 0 _< j _< n. (T, Z)  is called a piecewise mono ton i c  m a p  of  class E n for 

an n _> 1, if (T ,Z )  is of class R" and there exists a j >_ 1, such that (TJ) ' is a 
j - -1  piecewise continuous function on Xj  :--- Nt=o T - t X  and infzeR(T) [(TJ)'(z)[ > 1, 

where we assume that [(TJ)'(x)[ = min{[(TJ)'(x-)[, [(TJ)'(x+)[} for all x • Xj .  If 

(T, Z)  is of class R n and there exists a piecewise continuous function f : X ~ R, 

such that f(J) is a piecewise continuous function with respect to Z for all j • N0 

with 0 < j < n, then (T, f ,  Z) is called a weighted  piecewise m o n o t o n i c  m a p  

of  class W".  If (T, Z)  is of class E"  for an n • N U {~} ,  then (T, - t  log [T'[, Z) 

is of class W "-1 for all t • R. 

In order to define topologies on R n, W" and E n we define first topologies for 

piecewise continuous functions and for partitions. Let e > 0. Two continuous 

functions f :  (a, b) ~ R and ] :  (5, b) ~ R are e-close, if 

(1) ] a - a ] < e a n d l b - 5  I < ¢ ,  

(2) If(x) - f (x) l  < ~ for all x • (a, b) n (a, 5), 

(3) SUpxe(a,a)If(x) - ](a+)l < ~, if a < fi, or supze(a,a)lag(x) - f(a+)l < e, if 

otherwise 5 < a, 

(4) sup~e(~,,b ) If(z) - ag(b-)[ < ¢, if 5 < b, or sup~e(b,~, ) lag(z) - f(b-)] < ~, if 

otherwise b < b. 

We want to remark, that (a, b) N (5, b) # 0 by (1), if ¢ is small enough. 

Suppose that X and )[ are finite unions of closed intervals. Let 

Y = {Y1,Y2,...,YN} be a finite partition of X, where II1 < Y2 < " "  < 

YN, and suppose that Yj = (cj ,dj)  for j • {1 ,2 , . . . ,N} .  Suppose that :~ = 

{ I ? l , ~ , . . .  ,I?N} is a finite partition of .~ ,  where I~1 < ~ < . . .  < IT"N, and sup- 

pose that 17"j = (fij, dj) for j • {1 ,2 , . . . ,  N}. Then we say the partitions y and 
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35 are e-close, if Icj - c i l  < e and [dj - dj[ < e for  j E {1,2 , . . .  ,N}.  

Now let f : X --* R and ] : X --* R be piecewise continuous functions with 

respect to Z ( f ) ,  resp. 2 ( f ) .  Then f and f are said to be e-close, if there exists a 

finite partition y = {Y~, Y2,. . . ,  YN} of X refining Z ( f )  with Y~ < Y2 < "'" < YN 

and a finite partition 35 = {IY1,I22,... ,I2N} of .Y refining 2.(f)  with I7"1 < f'2 < 

• "" < f'N, such that f [ Yj is e-close to 3 ? [ l)j for j E {1 ,2 , . . . ,  N}. 

Observe that this definition implies that 35 is e-close to y ,  if f is e-close to f .  

In Section 4 we shall need the following result. 

LEMMA 1: Let f : X ~ R be a piecewise continuous function with respect to 

the l~nite partition Z ( f )  of X ,  and let e > O. Suppose that y = {Y~, Y 2 , . . . ,  YN} 

is a finite partition of X ,  which refines Z( f ) ,  where Y1 < Y2 < "'" < YN. Set 

s := sup sup I f ( x ) -  f (y ) [ .  
Y E N  x,yEY 

f f  f : ) (  -~ R is a piecewise continuous function, which is e-close to f ,  then there 

e ists a  nite p a r m l o n  35 = {?,, o f  2 wi th  71 < < . . .  < 

which is e-close to y ,  such that for every j E {1,2 , . . .  ,N} 

sup f (z )  < inf f ( x )  + s + e and inf f (x)  > sup f ( x )  - s - e .  

Proof: By the definition of e-closeness there exist finite partitions 

1) = {V1,V2, . . . ,~}  of X and 1) = {1)1,1)2,.. . ,~} of ~', such that l) is e-  

close to l) and f ] ~ is e-close to f I Vj for all j E {1 ,2 , . . . , / } ,  where we 

assume V1 < V2 < ""  < ~ and IYl < I~'2 < . "  < Vt. We can assume, that 

P is a refinement of 3). Hence for every j E {1,2 , . . .  ,N} there are numbers 
- -  s j  - -  

i j , s j  E {1 ,2 , . . . , / }  with Yj = Uk=ij Vk. Now we define Yj := (inflY/j,supVsj) 

and 35 := { ~ :  j = 1 ,2 , . . . ,W}.  Then 35 is e-close to y .  Let j E {1 ,2 , . . . ,W}.  

By the definition of e-closeness, by definition of s, and as f is piecewise continu- 

ous, we get f ( z )  - s - ¢ < f ( y )  < f ( x )  + s + e for every x E Yj and every y E }-j, 

which gives the desired result. | 

Now we define the following topology on W °. Let (T, f ,  Z)  and (T, f ,  Z)  be 

both of class W °, and let e > 0. Suppose that Z = {Z1 ,Z2 , - . . ,ZK}  with 

Z1 < Z2 < " "  < ZK. Then (T, f ,  Z) and (T, fi, .~) are said to be e-close in W °, 

if 

(1) T [ Zj and T [ Zj are e-close for j -= 1, 2 , . . . ,  K, 
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~ ~ 

(2) f I Zj and f ] Zj axe e-close for j = 1 ,2 , . . . ,  K.  Observe that this definition 

implies that 2 is e-close to Z,  if (T, f ,  Z)  is e-close to (T, f ,  Z).  

If (T, Z )  and (:F, 2 )  are both of class R °, then (T, N) and (T, 2 )  are said to be 

e-close in R °, if (1) above is satisfied. This topology coincides with the topology 

considered in [5]. If (T, Z) and (¢, Z)  are both of class R",  then (T, 2 )  and 

(¢,  2 )  are said to be e-close in R", if (T, T (1) , Z) and (~b, :~(J), 2 )  are e-close in 

W ° f o r j  • N0, j _< n. I f ( T , Z )  is of c l a s sE"  f o r a n n  >_ 1, i f •  > 0 i s  smaU 

enough, and if the map (T, Z) of class R" is e-close to (T, Z) in R",  then (T, 2 )  

is of class E".  Two weighted piecewise nmnotonic maps (T, f ,  Z) and (T, f ,  2 )  of 

class W n are said to be e-close in W",  if they are e-close in R" and (T, f(i) ,  Z)  

and (T, f(i) ,  2 )  are e-close in W ° for j • No, j _< n. 

Next we modify (X, T) in order to get a topological dynaanical system. 

Let (T ,Z)  be a piecewise monotonic ma l) of class R °, and let y be a finite 

partition of X,  which refines Z. We assulne throughout this paper, that y = 

{Y1,Y2,. . .  ,YN} with Y1 < ]I2 < "'" < ]IN. Set x0 := i n f T X  and xl := supTX.  

Now define 

oo 

E := {infY, supY : Y • y} and W := ( U  T - J ( E \  {x0,x~})) \ {x0,xl}. 
j=O 

Set R y : = R \ W O { x - , x  + : x E W } , a n d d e f i n e y < x -  < x  + < z ,  i f y < x < z  

holds in R. This means, that we have doubled all endl)oints of elements of y ,  

and we have also doubled all inverse images of doubled l)oints. For x E ](y define 

7r(z) := y, where y E R satisfies either x = y or y E W and x E {y- ,y+} .  

We have that x ,y  E Ry,  7r(x) < 7r(y) iml)lies x < y. Now we define a map 

c :  7r- ' (W) ~ 7r-l(W) by c(x- ) := x + and c(x +) := x -  for x e W. 

For x,y E RN with x < y let n(x,y) be the minimunx of all k E N0, such that 
k there exists a z e ((-Jj=o T-JE)  \ {x0, x, } with z < z + and z -  < y (n(x, y) := co, 

1 if such a k does not exist). Then define d(x,y) := It(x) - 7r(y)l + ,,(x,~)+, 

(d(z, y) := In(x) - 7r(y)h if n(z, y) = co). This gives rise to a metric d on Ry. 

The topology generated by d is exactly the order topology on Ry. 

Let X y  be the closure of X \ W in Ry. Observe that X y  is compact. Now 

define Zo(Y) := {x • Ry  : lr(x) • E} a n d E y  := Eo(Y) tqXy.  Then Zy  = 

{al ,a2, . . .  ,a2g} with al < a2 < "" < a2N, where N := card y .  For a perfect 

subset A of R let .J, be the closure of A \ W in Ry. Now set ); := {l? : Y • y}  

and 2 := {2 : Z • Z}. Then ); --- {[a2j-l,a2j] : j = 1 , 2 , . . . , g } ,  where 
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[a,b] := {x E R y :  a < x < b}. The map T I X \ (W U E) can be extended to a 

unique continuous piecewise monotonic map Ty :  Xy ~ Ry. Then (Ty, 2 )  is a 

continuous piecewise monotonic map of class R ° on Xy = (-J?e:9 ~" If there is 

no confusion we shall use the notation y instead of ~) and Z instead of Z. Define 

E(Ty) := {x e Xy : ~r(x) e E(T)} and E1(Ty) := {x e Xy : ~r(x) e El(T)}. 
OO OO " The set Ry := Nj=o Ty- iXY satisfies Ry = Nj=0 Ty JZy  = {x E Ry : 7r(x) • 

R(T)} N Xy. Ty is called the completion of T with respect to y.  

A topological  dynamical  sys t em (X, T) is a continuous map T of a compact 

metric space X into itself. Hence (Ry, Ty) is a topological dynamical system. 

Let (T, f, Z) be a piecewise monotonic map of class W °, and suppose, that y 

is a refinement of Z. Let Ty be the completion of T with respect to y.  Then 

there exists a unique continuous function fy  : Xy ---* R with fy(x) = f(x) for 

all x • X \ (W U E). Then (Ty, fy,  Z) is called the completion of (T, f ,  Z) with 

respect to y.  

If (X, T) is a topological dynamical system, and f : X --~ R is a continuous 

function, then the topological  pressure  p(X, T, f)  is defined by 

(1.1) 
n--1 

p(X,T, f )  := lim limsup 1 log sup E e x p ( E  f(TJx)) ' 
~.---~0 n---~oo rt E z E E  j=O 

where the supremum is taken over all (n, e)-sepaxated subsets E of X. E C X is 

called (n, •)-separated, if for every x # y E E there exists a j E {0, 1 , . . . ,  n - 1} 

with d(TJx, TJy) > ¢. 
If (T, f, Z) is a piecewise monotonic map of class W °, and y is a finite partition, 

which refines Z, then (Ry, Ty) is a topological dynamical system and fy : Ry ---* 
R is a continuous function, where (Ty, fy, Z) is the completion of (T, f, Z) with 

respect to y.  Then we define 

(1.2) p(R(T), T, f) := p(Ry, Ty, f y ) .  

Lemma 2 of [7] says, that this definition does not depend on the partition y.  

Furthermore we define for n E N 

n--1 

(1.3) Sn(R(T), f)  := sup E fy(TyJx) " 
z E R y  j = 0  

Observe that this definition does not depend on the partition 3). 
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Finally we define the Hausdorff dimension. For an A C_ R, A ¢- ~1 define 

d i a m A : =  sup ] x - y l .  Let YC_R. F o r t _ > 0 a n d e > 0 s e t  
x,yEA 

m(Y, t, e) := inf{ E (diam A)t :  ,4 is an at most countable cover of f 
AEA 

with diam A < e for all A • A} . 

Then define the Hausdorff dimension HD(Y) of Y by 

(1.4) HD(Y) := inf{t >_ 0: lim m(Y,t ,e)  = 0}. 
e'---*0 

In [7] this definition is slightly modified, which allows to define the Hausdorff 

dimension also on Xy - -  the space, where the completion Ty of a piecewise 

monotonic map T of class R ° acts - -  in a way, such that HD(Ry) = HD(R(T)). 

At this point we remark, that all results of this paper hold also in the situation 

considered in [7], where a bit more general situation is treated. 

2. Oriented graphs associated to a piecewlse monotonic map 

Now we define an at most countable oriented graph (79, ~ ) ,  called Markov di- 

agram, which describes the orbit structure of (R(T), T) (el. [2]). Let (T, Z) be 

a piecewise monotonic map of class R °, and let y be a finite partition of X, 

which refines Z. Let Ty be the completion of T with respect to y and set 

K := card Z and N := card 3). Then we can write Ey  = {hi ,a2, . . .  ,a2N} with 

al < a2 < "" < a2N. As E(Ty) C_ Ey  there exists an I C {1 ,2 , . . . , 2N}  with 

c a r d I  = 2K and E(Ty) = {hi : i • I}. Then every Y • y can be written 

a s Y =  [a2j-l,a2j] f o r a j  • {1 ,2 , . . . ,Y} .  Let Y0 • y a n d l e t  D b e a p e r f e c t  

subinterval of Y0. A nonempty C C_ Xy  is called successor  of D, if there exists 

a Y • 2~ with C = TyD Cl Y,  and we write D ~ C. We get that every successor 

C of D is again a perfect subinterval of an element of ~.  Let 79 be the smallest 

set with y C_ 79 and such that D • 79 and D ~ C imply C • 79. Then (79, 4 )  

is called the M a rkov  d i a g r a m  of T with respect to y .  79 is at most countable 

and its elements are perfect subintervals of elements of y .  

Set 790 := Y, and for r • N set 79~ := 79r-1 U {D • 79 : 3 C • 79r-1 with C --~ 

D}. Then we have 790 C 791 C_ 792 C_... and 79 = U ~ 0  79~. 

We shall need also another oriented graph (~,-~). To this end we introduce 

the following notations. Let i • {1, 2 , . . . ,  2N}. Define 

j(i) := min{j E N: TyJai ~ Xy} ,  
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where we set j ( i)  := 0% if TyJai E X y  for all j E N. Now define 

(2.1) ai , j :=TyJai  f o r i E { 1 , 2 , . . . , 2 N } a n d j E N o ,  O < _ j < j ( i ) .  

Set 9 := {ai j  : i E I , j  E N0,0 _< j < j(i)}.  For a, b E 9 we introduce an arrow 

a ~ b, if and only if either Tya = b or b E EI(Ty)  and Tya = c(b). Observe 

that (9, 4 )  does not depend on the partit ion y .  The graph considered in [5] is 

similar to (9, --+). 

Let (~,--*) be an oriented graph. For n E N we call co --* cl --* . . .  ~ cn 

a p a t h  o f  l e n g t h  n in 7/, if cj E 7-/ for j E {0, 1 , . . . , n }  and cj_ 1 ---+ cj for 

j E {1 ,2 , . . .  ,n}. Co --* Cl ~ c2 -* . . .  is called an inf ini te  p a t h  in 7-/, i f c j  E 7-I 

for all j E No and c j-1 --* cj for all j E N. A subset C of 7 / i s  called closed,  

if c E C, d E 7-( and c ~ d imply d E C. 7-( is called i r r educ ib le ,  if for every 

c, d E 7 / t h e r e  exists a finite path co --* cl --+ - "  ~ c,, in 7-( with co = c and 

c ,  = d. If 7-/is irreducible and finite, then 7-t is called f ini te  i r r educ ib le .  An 

irreducible subset C of 7~ is called m a x i m a l  i r r e d u c i b l e  in ~ ,  if every 6'  # C 

with C C_ C' C_ 7 / i s  not irreducible. 

Suppose that (T, f ,  Z)  is a piecewise monotonic map of class W °. Suppose that 

3; is a finite partit ion of X, which refines Z. Let (Ty, fy ,  Z)  be the completion 

of (T, f ,  Z)  with respect to Y, and let (~,--*) be the graph introduced above. For 

a, b E G define 

Jr(a) if a ~ b, 

(2.2) ao,b(f) := 0 otherwise. 

Set a(f) :=  (aa,b(f))a,be . As card {b E 9 : a --* b} _< 2 for all a E G, we 

get }-~be6 Ga,b <_ 2e II/11~. As in [7] this implies that u ~ =a(f) is an  O ( 9 ) -  

operator and v ~-* G(f )v  is an g~(G)-operator.  Both operators have the same 

norm IlG(f)l[ and the same spectral radius r (C(f) ) .  We have 

(2.3) IIa(f)ll = sup Z Ga,b(f),  
aEl/ bEI3 

n--1 

(2.4) ]lG(f)"][ = sup Z I I  elY(hi) for all n E N, 
a E ~  bo=a---,bt  . . . . .  b,, j=0 

where the sum is taken over all paths bo ~ bl ~ .. .  ~ b, of length n in G with 

bo = a ,  and 

(2.5) r (a ( f ) )  ---- n--,~lim IIG(f) n II ~ = i ~ f  IIG(f) n II 
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Observe tha t  the matr ix  G( f )  does not depend on the par t i t ion y .  The  next 

l emma gives an upper  bound  for r ( G ( f ) ) ,  if there is no x E EI(Ty)  with Ty"x  E 

E](Ty)  for an n E N. 

LEMMA 2: Let (T, f ,  Z )  be a piecewise monotonic map  of  class W °. 

(1) Suppose that ~ contains no dosed paths bo ~ bl "--* ""  ~ bn with bo = 

b,, E EI(Ty) .  Then 

logr(G(f)) < lim 1S,(R(T),  f) < p(R(T), T, f) . 
rl---+oo n 

(2) I f T y " x  ~ E I ( T y )  for all x E E I ( T y )  and a/1 n e N, then 

l ogr (G( f ) )  < lim 1 S , ( R ( T ) , f )  < p ( R ( T ) , T , f )  . 
n --.* O0 n 

Proof." (1) For a E ~ let n(a) be the smallest number  n E N, such tha t  there 

exists a pa th  b0 ~ bl ~ . . .  ~ b,, of length n in G with b0 = a and b,, E E I ( T y ) ,  

where we set n(a) :=  oo, if there exists no such n. This gives tha t  every pa th  

b0 --* bl ~ . . .  ~ b,  of length n < n(a) in ~ with b0 = a satisfies bj = TyJa 

for j E {0, 1 , . . .  ,n}.  Fur thermore  we have Ty'*(~)a E EI(Ty) ,  if n(a) < co. The  

definition of G gives tha t  there exists an s E N, such that  n(a) < oo implies 

<_ 

Let n E N0. If bo ---* bl --~ .." ~ bn+K, is a pa th  of length n + K s  in ~, 

then our  assumpt ion  on ~ gives card {j E {0, 1 , . . . ,  K s } :  b I E E l (Ty ) }  <_ K - 1 

and n(bgs)  = cx~. Hence for every a E ~ there are at most  2 K-1 different paths  

bo ~ b] ~ . . .  ~ bn+gs of length n + K s  with b0 = a. If n is large enough,  this 

gives 

n . . b K s - I  n - 1  

H eY'('~) --<2K-IeKslIYlI" exp(E fy(bj+K,)) = 
b o = a - - - * b l  . . . .  - - - * b n + K ,  j=0  j=O 

rl--1 

2 K-1 e KsllIIl°° exp(~-'~ fy (TyJbKs))  <2K- le  K'lllll°° exp(Sn(R(T) ,  f ) ) .  
j=0 
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Now we get by (2.4) and (2.5) 

logr(G(f)) = l i m  1 ,--.oo n + K s  log IIG(Z)"+K'II -- 
1 n+Ks-1 

lim - - l o g s u p  ~ H eY'(bD < 
n--*oo n + K s  .ca bo_~a_.,bl...,..._..,bn+K, j=O 

n 1 • K - 1  Ks l l f l l ° °+  - S , , ( R ( T ) , f ) ) =  
l i - m o o ( ~  l°g 2 + n + K s  n + K s n  

lim 1 S n ( R ( T ) , f ) .  
r l  --.* OC n 

Using (1.2) and (1.3) this gives the desired result, since 

n - - 1  

lim -1 sup Z f y ( T y J x ) < _ p ( R y , T y ,  fy ) .  
n-.--*c~ 72 xERy  j = 0  

(2) Suppose that b0 ~ bl ~ --" -* bn is a path of length n in G with b0 = bn • 

Zl(Ty) .  Set k := m i n { / •  N : bl • E](Ty)}.  As b, • Zl (Ty)  we get k _< n. Since 

b, q~ E , (Ty )  for l • (1 ,2 , . . .  ,k - 1} we get Tykbo • EI(Ty) ,  which contradicts 

our assumption. Now (1) gives the desired result. | 

In the sequel we shall need also a description of the Markov diagram in a 

different way (which will be called variant of the Markov diagram)• This will be 

similar to that used in [3]. 

Let (T, Z)  be a piecewise monotonic map of class R ° and suppose that y is a 

finite partition of X, which refines Z. Let (Ty, Z)  be the completion, and (79, --~) 

the Markov diagram of T with respect to 3;. First set 

34 := { ( i , j ) :  i e { 1 , 2 , . . . , 2 N } , j  • N0,0 _<j < j(i)}, 

and for r e No define.Mr := {(i , j)  E .M : j < r}. Now we define a map 

A : A'/ ~ 19 with A(A4) = / 9  and A(A4r) = D~ for all r E No, such that a/d is 

an endpoint of A(i , j )  for all ( i , j )  E 34. This map will be surjective, but need 

not be injective, that means a C E D can be represented by different elements 

of 34. Furthermore we define arrows between elements of 34, such that c -* d 

in 34 implies A(c) ~ A(d) in 79, and for every c E 34 the map A is bijective 

from {dE  34 : c ~  d} to {D E 79: A(c) ~ D}. Furthermore we shall have, 

that c e .Mr implies the existence of a d E .Mr with A(c) C_ A(d) and either 

A(c) = [aa, ac] or A(c) = [ac, aa]. 
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For j E { 1 , 2 , . . . , N }  set A(2j - 1,0) := A(2j,0) := Y/. Hence we have ai,o 

is an endpoint of A(i,O) for all i E {1 ,2 , . . . , 2N } .  Now suppose that A ] M r  

is constructed, and all arrows beginning in .t,4r_l are described for an r E No. 

Let i E ( 1 , 2 , . . . , 2 N ) ,  and suppose that j(i) > r + l .  Then ( i , r )  E A4~ and 

A(i, r) E :Dr. We have that A(i, r) C_ A(u, v) and either A(i, r) = [au,v, ai,r] or 

A(i, r) = [ai,~, au,v] for a (u, v) E A/[~. First we suppose, that there exists an s E 

{0, 1 , . . . ,  r -  1) with A(i, r) = A(i, s). In this case we introduce an arrow (i, r) 

d if and only if either d = (i, r + 1) or d ¢ (i, s + 1) and (i, s) ~ d. Furthermore 

we set A(i, r + 1) = A(i, s + 1). Now we consider the case A(i, r) ~ A(i, s) for 

all s E {0 ,1 , . . .  , r  - 1}. Set C := {C E T~: d(i,r) ---+ C, Tyai,r ~ C, Tya~,v ~ C). 
For every C E C there exists an i(C) E ( 1 , 2 , . . . , 2 N }  with A(i(C),O) = C. We 

introduce an arrow (i, r) ~ (i(C), 0). If A(i, r) has a successor C with Tya~,, E C 

and Tyai,r ~ C, then we introduce an arrow ( i , r )  ~ (u,v + 1). If j ( i )  > r + 1, 

then there exists a successor D of A(i, r) with ai,r+l = Tyai,~ E D. We introduce 

an arrow ( i , r )  ~ (i,r + 1) and define A(i,r + 1) := D. We have that ai,~+x is 

an endpoint of d(i, r + 1). If Tya~,, E A(i, r + 1), then A(i, r + 1) C_ A(u, v + 1) 

and we have either A(i,r + 1) = [a~,~+l,ai,r+l] or A(i,r + 1) = [ai,r+l,a,,,+l]. 
Otherwise there exists a w E {1 ,2 , . . . ,  2N} with A(i, r + 1) C_ A(w, 0), such that 

either A(i, r + 1) = [aT,0, ai,~+l] or A(i, r + 1) = [ai,~+l, aT,0]. This finishes the 

construction of the oriented graph (.t.4, 4 )  and the function A. 

(.A, ---*) is called a va r i an t  o f  t he  M a r k o v  d i a g r a m  of T with respect to y ,  

if .A C_ .h/[ satisfies the following properties. 

(1) If i E { 1 , 2 , . . . , 2 N }  and j E No, then (i,j) E A implies (i , /)  E A for 

l E {0 ,1 , . . .  , j ) .  

(2) c, d E A and c -* d in .A4 imply c ~ d in A. 

(3) c,d E A and c ~ d in A imply either c ~ d in A~ or there exists a 

do E 2t4 \ ,4 with c ~ do in .h/[ and A(d) = A(do). 

(4) For c E A the map A : {d E A : c ~ d} -o {D E / ) :  A(c) ~ D} is bijective. 

(5) A(A n Mr)  = for all r • N0. 

Observe that (.h~I,---~) is a variant, and (T),---*) can be considered as a variant 

of the Markov diagram of T with respect to Y. For r E No set Ar := A M M r .  

Now suppose, that (T, Z)  is a piecewise monotonic map of class R °, that 

f : X ---* R is piecewise constant, and that J; is a finite partition of X,  which 

refines both Z and Z(f) .  Let (A, --~) be a variant of the Markov diagram of T 

with respect to J;. For c • A let fc be the unique real number with fy(x)  = fc 
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for all x E A(c). For c, d E A define 

{ e  lc i f  c ~ d, 

(2.6) F~,d(f) := 0 otherwise. 

Set F ( f )  := (F~,d(f))~,aeA, and for C C_ A set Fc(f )  := (F~,d(f))c,deC. It is 

shown in [7], that  u ~ uFc( f )  is an g ' (C)-opera tor  and v ~ Fc( f )v  is an 

g~(C)--operator, where both operators have the same norm IIFc(f)ll and the 

same spectral radius r(Fc(f)) .  We have 

(2.7) IlFc(f)ll = sup Z F~,d(f) ,  
cEC dEC 

n--I 

(2.8) IIF~(S)"II = sup ~ H J°, for every. C N, 
C~C CO~_C__¢.CI__~..._..~C n j-~-O 

where the sum is taken over all paths co --+ cl ~ . .-  --~ cn of length n in C with 

co  = c ,  and 

(2.9) r(Fc(f ) )  = lim IIFc(f)"ll ~ = inf IIFc(f)"ll~ . 
n---,oo nEN 

The next lemma shows, that  the spectral radius of F ( f )  does not depend on the 

variant A. 

LEMMA 3: Let ( T , Z )  be a piecewise monotonic map  of c/ass R °, and let f : 

X --* R be a piecewise constant function. Suppose that 3; is a finite partition of  

X ,  which refines both Z and Z ( f ) .  Let (A,--*) and (A',--+) be two variants of 

the Markov diagram o f t  with respect to y ,  and set F.a( f ) := ( Fc,a( f ) )c,d~A and 

FA,( f )  := (Fc,a(f))~,a~a,, where Fc,d(f) is defined as in (2.6). Then [IFA(f)nll = 

IIF.a,(f)"ll for a/1 n E N, and r(FA(f) )  = r(FA,(f) ) .  

Proof: By (2.9) it suffices to show IIF~4(f)nll = IIF. . ( f )nl l  for all n ~ N. For 

c E .2, let fc be the unique real number with f y (x )  = fc for all x E A(c), and for 

d E A'  let fa be the unique real number with f y ( x )  = fd for all x E A(d). Let 

n E N, and let c E .4. Then there exists a c' E .4' with A(c) = A(c'). As for 

every d E A the map a ~ A(a) from {a E .4 :  d ~ a} to {C E D :  A(d) ~ C} is 

bijective, and as the same holds for A' ,  we get by (2.8) that  

n--1 n--1 

Z II = Z II -< 
cOmc--+cl"+"'-'bcn j - - - -O  domc~-~dl--~...-+dn j=O 
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where the first sum is taken over all paths co --* ca ~ ""  ~ c,, of length n in ,4 

with co = c, and the second sum is taken over all paths do ~ dl ~ "-" ~ d,, of 

length n in A'  with do = c'. Hence (2.8) gives [[F.a(f)"[[ <_ [[F.4,(f)"H. Changing 

the rules of ,,4 and .,41 in this calculation gives the desired result. II 

Remark:  The above proof shows a bit more. Suppose that C C_ A and C I C ,,4 I 

satisfy, that  for every c E C there exists a c' E C' with A(c) = A(c'). Furthermore 

we suppose, that  if c 6 C, c' E C' and A(c) = A(c'), then d E C and c ~ d in 

A imply the existence of a d' 6 C' with c' ~ d' in A'  and A(d) = A(d'). Then 

IIFc(f)"ll < IlFc,(f)"ll for all n E N and r(Fc( f ) )  < r(Fc,( f)) .  

The next lemma gives a way to estimate v(F( f ) ) ,  if only a finite part  of the 

Markov diagram is known. 

LEMMA 4: Let (T, Z)  be a piecewise monotonic map of class R °, and let f : X ---} 

R be a piecewise constant function. Suppose that y is a t~nite partition of X ,  

which refines both Z and Z ( f ) .  Let (A, ~ )  be a variant of the Markov diagram 

o f T  with respect to 3;, and for c E .,4 denote by fc the unique real number  with 

f3~(x) = fc for all x E A(c). Set F ( f )  := Fat(f). Then 

(2.1o) 
n - - 1  

= F " = IIF(f)"l l  II . a . ( f ) I I  sup Z H e/q f o r a l l n e N ,  
C~40 CO=C~Ct"~'"-'~Cn j=O 

where the sum is taken over MI paths Co ~ Cl -----'t . . .  ~ Cn Ol ¢ length n in A with 

C 0 = C, a / l d  

(2.11) ,'(F(f)) = lim IIF.a.(f)"ll~ F a n ( f )  I[ ~ 

Proof: As (2.10) implies (2.11) by (2.9) it remains to show (2.10). To this end 

we use (2.8). Fix n E N. Now fix c E .4. Then there exists a d  E A0 with 

A(c) C_ A(d). Let e0 ~ c~ --~ .- .  ~ cn be a pa th  of length n in A with co = c. 

We show by induction, that there exists a path  do ~ dl ~ " "  ~ d,, of length n in 

.,4 with do = d and A(cj) C A(dj) for all j E {0 ,1 , . . .  ,n}. If d0 ,d l , . . .  ,dk- i  are 

constructed, then A(ck-a) C_ A(dk-~) and there exists a Y E 3 ) with A(ck) C Y. 

Hence A(ck) = TyA(ck_~)NY C TyA(dk_a)NY.  Therefore there exists a dk E A 

with dk-1 ~ dk and A(dk) = TyA(dk-~)OY.  This construction gives an injective 

map  from the set of all paths of length n in A with co = c to those with do = d. 

Hence 
n--1  n - -1  

II II 
c o = c - - * C l  . . . . .  Cn j = 0  d o = d ~ d t  . . . . .  d n  j = 0  
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This gives 

n--1 

F " II .4.(:) I1 <~ IIF(f)"ll = sup ~ 1I e& 
0 ~ 4 0  C O ~ - C ' * C l - ' - ~ ' " ~ C n  j = 0  

Observing that every path co + cl + " "  + c ,  of length n in .4 with co E .40 is 

in .4, we get the desired result. | 

Using Lemma 3 we get by the proof of Lemma 6 in [7] that 

(2.12) p(R(T), T, f )  = log r(F.4(f)) 
i 

for every variant (A, 4 )  of the Markov diagram of T with respect to y .  This 

gives together with Lemma 4 a method to estimate p(R(T), T, f )  from above. 

We shall also need a result to estimate p(R(T), T, f )  from below. 

LEMMA 5: Let (T, Z) be a piecewise monotonic map of class R °, and let f : 

X ~ R be a piecewise constant function. Suppose that y is a finite partition of 

X ,  which refines both Z and Z( f ) ,  and suppose that 

p(R(T), T, f )  > lira 1S , (R(T) ,  f) .  
n - " *  O 0  n 

Then for every ~ > 0 there exists an r E N, such that for every variant (.4, -+ ) of 

the Markov diagram of T with respect to y there exists an irreducible C C_ Ar 

with logr(F¢(f)) > p ( R ( T ) , T , f )  - e. 

Proof." By Theorem 11 of [2] the nonwandering set f~(Ry,Ty) of (Ry,Ty)  can 

be written as ~(Ry,  Ty) = Ueer L(E) U LoQ U P U W, where the sets L(E), Loo, P 

and W have the properties described in Theorem 11 of [2]. As htop(Loo U P) = 0 

we get 

n--1 
1 

p(Lo~ U P) <_ lira - sup ~ fy(TyJx) 
n---*c~ r$ zERy j=o  

= lim 1Sn(R(T) , f )  
n ","'* oo n 

by (1.3). Using this and the fact, that every x E W is not contained in the centre 

of (Ry, Ty), we get by (1.2) and by Corollary 2.18 of [1] 

p(R(T), T, f )  = p( Ry,  Ty, fy )  = supp(L(E), Ty, fy). 
£EP 
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Hence there exists an E e r with p(L(C), Ty, fy)  > p(R(T), T, f )  - e and 

n - 1  

p(L(£), Ty, fy)  > lira -1 sup ~ fy(T:vJz). 
n---*oo /1 xERy j=O 

Now the proof of Lemma 6 in [71 shows, that log r(Fe(f))  = p(L(C), T, f). 

Let (A, ~ )  be a variant of the Markov diagram of T with respect to 3;. Define 

g.~ := {cE M :A(c) E E} andC.4 := {cE A : A ( c )  E C}. By the proof of 

Lemma 3 (see the remark after Lemma 3) we get r(Fe,, (f))  = r(Fe(f)) .  As 

n--1 

r(Fe~(f)) > lira exp-1 sup ~_~fy(TyJx) 
n---*oo n z E R y  j=0  

we get by the proof of Lemma 6 in [7] that 

lim r(Fe~n~,(f)) = r(Fe~ (f)) . 
r-"~ O0 

Therefore there exists an r E l~l with logr(F&~n,~,(f)) > p ( R ( T ) , T , f ) -  e. 
Using the proof of Lemma 3 we get r(Fe~n~r(f))  <_ r(Fean.a,(f)), which gives 

log r(Fe,~ n.a,(f)) > p(R(T), T, f )  - e .  Since this implies r(Fe~n.4, (f)) > 0, and 

as F&~n.4,(f) is a finite matrix, there exists an irreducible C C_ ~A n A~ with 

r(Fc(f)) = r(Fe~n,4~ (f)), and hence log r(Fc(f)) > p(R(T), T, f )  - e. | 

3. Cont inui ty  of  the  Markov d iagram 

In this section let (T, Z) be a piecewise monotonic map of class R °, and let Y 

be a finite partition of X, which refines Z. Let Z0 be the set, which consists 

of all dements of Z and all maximal open subintervals of [inf TX, sup TX] \ X. 
We assume throughout this section, that Z0 = {Z1, Z2, . . . ,  ZL} with Z1 < Z2 < 

• " < ZL. Set J : =  {j E {1,2,. . . ,L} : Zj E Z}. I f6  > 0issmal lenough,  if 

(T, Z) is 6-dose to (T, Z) in R °, and if ~ is a finite partition of )( refining 2,  

which is S-close to y ,  then we get that y = {l~l,Y2,... ,YN} with Y1 < Y2 < 

• . .  < ?g, 2o = { 2 , , 2 2 , . . . , & }  with 21 < 22 < "" < 2L, 2 -- {2~ : j E J} ,  

and for j E J we have {i : Yi C_ Zj} = {i : Z C_ 2i}. We assume these properties 

throughout this section. The aim of this section is to show, that if (T, 2)  is 

G-close to (T, Z), and y is G-dose to y,  then their Markov diagrams have similar 

initial parts. 
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Define the numbers j ( i )  and the elements aid as in Section 2 for the map 

T, and define analoguously the numbers ~(i) and the elements ai,i for the map 

T. Then we have for il , i2 E {1,2, . . . ,2N} that ail,0 < ai~,o is equivalent to 

~til,o < ai2,o- 
Denote by (Ty, Z)  the completion of (T, Z) with respect to y ,  and let (D, 4 )  

be the Markov diagram of T with respect to y.  C, D E D are called y-close,  if 

there exists a Z E Z with C U D C_ Z and if there exists a j E {1, 2 , . . . ,  N} with 

C _C Yj and D C_ Yj-1 U Yj U Yj+,, where we set Y0 := YN+, := 0. Observe that 

y-closeness does not depend only on y,  but also on Z. 

LEMMA 6: Let (T, Z)  be a piecewise monotonic map of class R °. Suppose that 

y is a finite partition of X ,  which refines Z.  Then for every r E N there exists 

a ~ > O, such that for every piecewise monotonic map (T, Z), which is 6-c/ose 

to (T, Z)  with respect to the R°-topology and for every finite partition y of X" 

refining Z, which is ~-c/ose to y ,  there exists a variant (A, 4 )  of the Markov 

diagram of T with respect to y and a variant (4 ,  4 ) of the Markov diagram of 

with respect to "Y with the following properties. 

(1) 4 r  can be written as a disjoint union 13o U 13i U I32, such that B1 U B2 and 

132 are closed in A ,  and 4o C 13o (B, and 132 may be possibly empty). 

(2) Every c E 4~ has at most two successors in B1 U 139. 

(3) There exists a bijective function ~ : Mr "--* Bo, and there exists a function 

¢:132 ~ G  
(4) For c, d E A ,  the property c ~ d in .4 is equivalent to ~(c) --~ ~(d) in 4.  

For c, d C 132 the property c ~ d in 4 implies ¢(c) --* ¢(d) in ~. 

(5) A(c) = Yj for a c 6 .4o and a j 6 (1 ,2 , . . . ,N}  implies 9~(c) 6 40 and 

~i(~(c)) = ?~. 
(6) c C A ,  and A(c) C_ A(d) for a d E Ao imply Aft(c)) C_ fi.(~(d)), c C B2 

and ¢(c) c A(d) for a d C .4o imply A(c) is ~-close to ¢i(~(d)). 
(7) Let P be the set of all paths co ~ el --+ . . .  ~ cr of length r in 4~ with 

co c 4o,  and set Y¢ := {(do, d l , . . . ,  dr): d~ C .4, U G for j C {0, 1 , . . . ,  ~}}. 
Then there exists a function X : 79 ~ A/'. 

(8) Let Co ~ Cl ~ . . .  --* cr C P,  X(Co ~ Cl ~ . . .  ~ cr) = (do ,d l , . . . , d r )  

and j E {0, l , . . . ,  r}. cj E 132 is equivalent to dj E ~, and we have then 

¢(c/) = dj. cj C I3o implies ~o(dj) = cj. c i E I3o U 13, implies ft(cj) is 

Y-close to .4(~(dj)). Fhrthermore cj C I3o U B, and j > 1 imply dj-1 --* dj 

i n A .  
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(9) For a fixed c E Ao and for a fixed (do, d, . . . . .  E X the e are at mos t  

2 r + l  different paths co --~ cl -* "" -~ cr E "P with co = c and X(Co --* cl --* 

• " --* Cr) = (do,d1, . . .  ,dr). Fhrthermore for s E {0, 1 , . . .  , r  - 1} and fixed 

do, d l , . . .  ,do E Ar U ~ there are at most 4 different b E ~, such that there 

exist ds+2, ds+3 . . . .  , dr E ArUG with (do, d l , . . . ,  do, b, ds+2,. . . ,  dr) E X(P). 

Proof." To prove this lemma it suffices to consider the completions of T and T. 

We use the notations X, T, y , . . . ,  resp. X, T, ~;,. . .  for these completions. 

We show by induction that the following extended version of the lemma holds. 

For every r E No and for every ~/ > 0 there exists a 6 > 0, such that for every 

piecewise monotonic map (T, 2~), which is 6-close to (T, Z)  with respect to the 

R°-topology, and for every finite partition 3) of .~ refining Z., which is g-close 

to y ,  there exists a variant (,4, --0 of the Markov diagram of T with respect to 

y and a variant (4 ,  --*) of the Markov diagram of 7' with respect to ~; with the 

following properties. 

(a) ( i , j )  E ,4r+1 implies ( i , j )  E .At+l- Furthermore (i,0) E ,4o for every 

i {1 ,2 , . . . , 2N} .  
(b) qo(i,j) = (i , j) ,  whenever ( i , j )  E ,4r. 

(c) If ( i , j )  E ,4r and (u,v) E ,4r+a, then ( i , j )  ~ (u,v) in ,4 is equivalent to 

( i , j )  ~ (u,v) in .A. 

(d) If ( i , j )  E ,4r+1, then there exists an s E J and a t E {1,2 , . . .  ,N} with 

aid E Zs  f) lit and fii,j E Zs M ~ .  

(e) If ( i , j )  E ,4r+1, then there exists a (u,v) E ,4r+1 with A(i , j )  c_ a(u ,v )  

and f t ( i , j )  C_ .4(u,v), such that either A ( i , j )  = [a . . . .a ,5]  and A( i , j )  = 

or A ( i , j ) =  [al,j,a,,~] and f~ ( i , j )=  [ai,~, a,,,]. 

(f) .At can be written as a disjoint union B0 U B1 U B2, such that B1 U B~ and 

B2 are closed in .At, and 130 = ~o(,4r). Furthermore we have ..~,0 _C B0, and 

every ( i , j )  E Jtr has at most two successors in 131 U B2. 

(g) Ir(ai,j) - ~(fii,j)] < 71, whenever ( i , j )  E Bo U B1. 

(h) If ( i , j )  E ,4r, ( i , j  + 1) E .,4r+, \ ,4r+1, then I~'(x) - 7r(Tai,j)l < r/for all 

x E f t ( i , j  + 1). 

(i) If ( i , j )  E 131, then we have I~?(x) - r(ai,j)l < r~ for all z E A( i , j ) ,  and 

[~r(x) - ~r(Tai,j)l < 7/for all x E C, if A(i , j )  --+ C in 7). 

(j) If ( i , j )  E B2, then there exists a p E { 1 , 2 , . . . , 2 N )  with %,o E E(T)  

and a k E { 0 , 1 , . . . , j  - 1} with k < j(p), such that %,t q~ E(T)  for 1 E 
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{ 1 , 2 , . . . ,  k}, I@(ai,i)-Tr(ap,k)l < r/, I~'(ap,k)-~r(ap,k)l < r/, and there exists 

an s E J with %,k E Z, and hi,j E Zs. We have then, that ¢ ( i , j )  = ap,k. 

(k) If ( i , j )  E B~, then there exists a (u,0) E A0 with %,k E A(u ,O) .  We have 

then, that A ( i , j )  is 3)-close to .3,(u,0). Furthermore we have 

I#(x) - ~r(ap,k)l < ~ for all x E A ( i , j ) ,  and I~'(x) - l r (Ta , ,k ) l  < r/ for 

all z E C, if A ( i , j )  ~ C in ~ .  

(1) ( i , j ) , ( u , v )  E 132 and  ( i , j )  ~ ( u , v )  in .A imply ¢ ( i , j )  ~ ¢ (u ,v )  in g. 

(m) Suppose that s E N, s _< r, and that (q, 0) e A0 and ( i , i )  6 B0 US, .  If co = 

(q,O) ---* cl - -* . . "  ~ c,  = ( i , j )  is a path of length s in .A, then there exists 

a path do = (q,0) ---* d, --* -.. ~ d, in At,  where A ( d , )  = [ai, j , , a i , , / , ]  

with ( i l , j a ) , ( i ~ , j 2 )  e A r ,  such that either r (a i ,  d , )  = 7r(ai,j) or r(ai,,j~) = 

~r(ai,/). Then we set Xo(co ~ c, ---* . . .  ~ co) := ( d o , d , , . . . , d , ) .  We 

have that f t ( i , j )  is y-close  to .4(d,), and ( i , j )  E 13o implies d, = ( i , j ) .  

Furthermore we have either d, = ( i , j )  or ]#(x) - ~r(ail,j,)[ < T/ for all 

x E f l ( i , j )  or I~(x) - 7r(a/, ,j, ) l < r/for all x E A ( i , j ) .  

(n) Suppose that s E N, s < r, and that (q, 0) E .A0 and ( i , j )  E 132. If co = 

(q,O) --* cl - - * ' "  --* c~ = ( i , j )  is a path of length s in A, then there exists 

a t E { 0 , 1 , . . . , s -  1} with t = max{/E {0 ,1 , . . . , s}  : ct E/3o UYl}. Then 

we set Xo(Co ~ c~ ---~... ~ c~) := (d0,d~,. . .  ,d~), where (d0 ,d l , . . .  ,dr )  := 

Xt(Co ~ Cl - - * . "  ~ ct) and dt := ¢(ct) for l E {t + 1,t + 2 , . . . , s } .  

(o) Suppose that s E N, s < r, and that (q, 0) E .A0 and ( i , j )  E -At. If 

co = (q,O) --* cl ~ "'" ~ c, = ( i , j )  is a path of length s in A, if ( p , k )  

satisfies k _< j and I~(x) - 7r(%,k)l < r/for all x E f i ( i , j ) ,  and if t E J 

satisfies ap,k E Zt and A ( i , j )  C_ Zt ,  then there exist ( u l , v l ) , ( u 2 , v 2 )  E 

.A~ with the following properties, x E [h,~,ol, ft,2,,,] implies x E Zt and 

[~'(x) - 7r(ap,k)[ < 7/. There are at most s different paths do = (q, 0) ---* 

dl ---~ ..- ~ d, of length s in A~ with x~(do ---* dl ~ . . .  ~ d~) = X,(Co "--* 

cl 4 . . .  ~ c , )  and ]#(x) - r(ap,k)] < r/for all z E fi,(d,), and each of these 

paths satisfies A(d~) C_ [fi-t,,~,fi~2,,~], and if d0 ~ d~ ~ . . .  ~ d, # co 

cl ~ - - -  ---, co then A(d,) N ]i(c~) = O. 

As (f) implies (1) and (2), (a), (b), (f) and (j) imply (3), (c) and (1)imply (4), 

(a), (b) and (d) imply  (5), (a), (b), (d), (j) and (k) imply (6), (m) and (n) imply 

(7) and (8) (set X := Xr),  and (h), (i), (k), (1), (m), (n) and (o) imply (9) (r/can be 

chosen so small, that j,  v < r and I~r(a~,¢)-~r(a=,~)l < 2~ imply re(hi,j) = 7r(a,,,,,)), 

it remains to show (a)-(o). First we define A0 := {(i ,0):  i E {1,2 , . . .  ,2N}} and 
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• A0 := ,40. We have that ai,o 6 A(i, 0) and fii,0 6 A(i, 0). 

Now suppose that r E N0. If r = 0 then the induction hypothesis is partially 

trivial, and partially shown in the following proof. If otherwise r > 0, then 

we assume that the extended lemma is shown for r - 1. Let 71 > 0. Define 

aa := min{I~r(ai, d~ ) -7r(ai~d2)l : ix,i2 E { 1 , 2 , . . . , 2 N } , j a , j 2  E { 0 , 1 , . . . , r  + 

1 ) , j l  < j ( i l ) , j2  < j(i2), lTr(ah,j,) -7r(ai~,12)l # 0} and a2 := min{l~r(Tai,,j) - 

7r(ai2,0)l : i l , i2 6 {1,2 , . . .  , 2 N } , j  6 {0, 1 , . . .  , r } , j  < j ( i ) ,  br(Ta~,,~)-~r(ai,,o)l 
0}. Hence a l  > 0 and a2 > 0. By the piecewise monotonicity of T there exists 

an as > 0, such that z , y  E Z,  for an s 6 J and 17r(x) - r(y)l < a3 imply 

I - (T~)-  ~(Tu)I < ¼min{r/,~,~2}. Set r/0 := ¼min{r/,~,~2,~}. Then there 

exists a 6 > 0 with 6 < r/o, such that the extended lemma holds for r replaced 

by r - 1 and r/replaced by r/0 (in the case r = 0 set 6 = r/0)- Now let (T, Z) be 

6-close to (T, Z)  with respect to the R°-topology and let Y be a finite partition 

of ) f  refining Z., which is 6-close to y .  

We show at first 

(3.1) 
s e J ,  x 6 Z , ,  y e Z~, then 17r(x) - ~r(y)l <77o ==~ 

1 min{r/, an, o~2} 17r(Tx) - +(¢y)l < 5  

As (T, ,~) is g-close to (T, e ) ,  there exists an a 6 Zs with I~r(x)-Tr(a)l _< r/0 < c~3, 

such that Ir(Ta) - ~'(7~y)l < 6 < ¼ rain{r/, cq, c~2}. Hence 

17r(Tx) - ~(Ty)I < 17r(Tx) - ~r(Ta)l + I~r(Ta) - ~(Ty)I < 
1 1 

min{r/, 41, a2} + ~ < ~ rain{r/, a l ,  a2}, 

which shows (3.1). 

Next we show for i, il, i2 e {1,2, . . . .  2N} and j e No, 0 _< j < min{j(i),," + 2} 

(3.2) 
7r(aix,0 ) < 7r(ai,j) < 7r(ai2,o), x 6 .X, 

3 . 
[~ (X) -  7f(ai,j) [ < ~mln{~,Otl,O~2} ==:@ ~(ail,D ) < ~(x) < ~(ai2,{}) , 

and for i, i l , i2 6 { 1 , 2 , . . . , 2 N }  and j E N0, 0 _< j < min{j( i ) , r  + 1} 

(3.3)  
7r(ai,,o) < 7r(Tai,j) < 7r(ai2,0), x 6 .~ ,  

3 
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By the definition of a ,  we get r(ai, ,0) + a ,  < 7r(ai,j) < 7r(ai,,0) - a , .  As y is 
S-close to y and ~ < 7/0 < ~- this gives 

al  3al  
~(ai,,0) < 7r( ai, ,o ) 3 t- ~ <_ lr( ai,j ) -- T < ~r( x ) < 

a ,i ) + T < a,, ,o ) - T 
< 

which shows (3.2). An analoguous calculation shows (3.3). From (3.2) and (3.3) 

it follows easily, that  for i • {1 ,2 , . . .  ,2N} and j E No, 0 < j < min{j(i),r + 2} 

(3.4) 
ai,j ~ E0,  ai,j • Yt for a t • { 1 , 2 , . . . , N } ,  x E ) ( ,  

3 . 
[~'(x) -7r(ai, /)l  < ~mm{~/ ,a l , a2}  ==~ x ~ E0,  x • ~ ,  

and for i • { 1 , 2 , . . . , 2 N }  and j E N0, 0 _< j < min{ j ( i ) , r  + 1} 

(3.5) 
Taij  ~ Eo, Tai,j E Zs for an s E { 1 , 2 , . . . , L } ,  x • X ,  

3 m i n { q , a l , a 2 }  ==~ x ~ E 0  x E Z ,  ]~(x) - rr(Taij)[ < -~ , . 

Suppose that  (i, r) E .At. Throughout  this proof we assume, that  there exists 

a (u, v) • .At with A(i, r) C .4(u, v) and A(i, r) = [hu,v, 51,,], and that  ~'] .4(i, r) 

is strictly increasing (analoguous considerations show the desired properties, if 

.4(i, r) = [fii,r, flu,,], or if T I .4(i, r) is strictly decreasing). 

At first we suppose that  (i, r) • .At. Then set ~0(i, r) := (i, r). We have 

17r(ai,r)- #(hi,r)l < 7/o < 7/ and there exist sa • J,  t~ E { 1 , 2 , . . . , N }  with 

ai,r • Zst n Yq and 5i,r • 2~  M ~ , .  Furthermore there exists a (u,v)  • Mr 

with A(i, r) = [a . . . .  ai,r] C_ A(u, v) and Y](i, r) = [5 . . . .  ai,r] _C .4(u, v). T I Z.  is 

strictly increasing. As ]Tr(a.,.)-~'(a., .)] < .o < q weget  by (3.1) that  ]Tr(Tai,r)- 

#(Tai,r)] < ½ min{r/,~l,o~2} < 7/and Ilr(Ta., .)-#(2~fi~,.)l  < ½ min{~?,al,ol2} < 

~/. Set C := {C • D :  A(i,r) -+ C, Tai,r q~ C}, C, := {C • C : Ta,,,, ~ C}. If 

C1 # 0, then there exist j l , j2 • { 1 , 2 , . . . , N }  with C~ = {YJ : j l  _< j _< j2} and 

Ta,, ,  < inf Yj, < sup Yh < Tai,r. Now (3.3) gives Ta,,~ < inf l~jt < sup ]~j, < 

Tfi ,r ,  which shows A(i, r) ~ Yj for j l  _< j <_ j2. For every C E C~ there exists 

an i(C) • {1, 2 , . . . ,  2N} with C = A(i(C), 0) and the arrow (i, r) ~ (i(C), 0) is 

allowed in A and .A. Furthermore we have C = YJ for a j E {jx, j~ + 1 , . . . ,  j2 } and 

= .4(i(C), 0). Hence we make the arrows (i, r) --, (i(C), 0) in A and 2 .  The 

construction below shows, that  ifC\C~ # 0, then there exists a (fi, fi) • Ar+a with 
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(i, r) --~ (fi, ~) in ..4 and A, A(fi, ~) C_ Yj, _, and/i,(fi, ~) C_ Yj,_,. Besides these 

arrows there exists at most one (uo,vo) • f~r+l \ Ar+I with (i ,r)  ~ (Uo,Vo) 

in .A and T ~ , v  • A(uo,vo) (in this case (~,fi) • A0, A(fi,~) = Yil-1 and 

.4(fi,~) = 12j1_1 ). This shows (c) for the arrows (i ,r)  --, d with Tai,~ q~ A(d). 

Now we describe all other arrows in A mid .A beginning in (i, r). Suppose, 

that Tai,~ • X .  Then there exists an l • {1 ,2 , . . . , 2N}  with ai,~+l = Tai,~ • 

A(I,0) and hi,r+1 <_ al,o. Hence either ai,~+l = at,o or at,0 $ TA(i , r ) .  Set 

D := TA(i ,  r) fl A(l, 0), which is a successor of A(i, r), and set /)  := 7'A(i, r) f3 

-~(l, 0). Using Ta~,v < at,0 (3.3) gives 255,,v < ~t,0, which implies that / )  is a 

successor of A(i, r). If Ca~., • D, then au,,+, = 7"a,,v • A(l, 0), and (3.3) gives 

a~,~+l = T a , , ,  • A(I,0). In this case set ul := u and Vl := v + 1, which implies 

vl _< r + 1. If otherwise Th,,o ~ / ) ,  then there exists a ul • {1,2 , . . .  ,2N} with 

ul ¢ I and a~l,0 • /). (3.3) gives a~,.0 • D. Set v~ := 0 in this case, which 

gives Vl _< r + 1. In both cases we have D = [a,,,,,,ai,~+~] C A(ul ,Vl )  and 

/)  = [a,, , , ,  , sup /)] C_ ~t(Ul,Vl) with a,,,~, < sup / )  = min{at,0,~a/,~}. 
Suppose at first, that Thi,r ¢ )(. Then there exists an sz • {1 ,2 , . . . ,L}  \ J 

with 7'5/,~ • 2~ 2. By (3.5) we have Tai,r • Z~  or ai,~+l = Tai,~ • E. In the first 

case we have j ( i )  = 3(i) = r +  1 and the arrows described above are all arrows in 

A and A beginning in (i, r). We have (i, r +  1) ~ A~+~ UA~+,. In the second case 

the above shows, that we can choose the variants .A and .A such that (u l ,v l )  • 

• Ar+l VI .At+l, D c_ A(u l , v l )  a n d / )  = A(ul ,vl) .  a i , r+ l  • E gives a i , r + l  = hi,0, 

which implies 9 = A(u~,v~). We choose ,4 such, that ( i , r  + 1) ¢ A~+~ and 

(i ,r)  ~ (u~,vl)  is an arrow in A. As j ( i )  = r + 1 we have ( i , r +  1) ~ J[r+l. We 

make the arrow (i ,r) --* (u,, l)in A, which shows (c) in this case. 

It remains to consider the case Thi,~ • )(. In this case ai,~+l = Tai,r and 

there exist s2 • J,  t~ • {1,2 , . . .  ,N} with hi,~+~ • Z,2 Iq Yt2. By (3.4) and (3.5) 

we have hi,r+1 = Tai,r • Zs2 N Yt2 or Tai,r • Eo. First we consider the case 

hi,r+1 • Zs2 0 Y~. We have ,'t(i, r + 1) = / ) .  In this case we choose the variants 

such, that (i, r + 1) • Ar+~ ~ .A~+I and (i, r) ---} (i, r + 1) is an arrow in A and 

in .A. This shows (a), (c), (d), (e) and (g) in this ease. 

Now we consider the ease Tal,r • Eo. At first we consider the case ai,~+l = 

Tai,~ • X .  We have then ai,~+l = at,o, D = A(ul,v~),  JD = A(u~,v~) and 

A(i, r + l )  = [5~,0, ai,r+~], where ap,o = c(al,o). We choose A such, that (i, r + l )  

.A~+I and (i, r) ~ (Ul, Vl) is an arrow in .4. Furthermore we choose .A such, that 

( i ,r  + 1) • .,4~+~ and (i ,r)  --* (u~,v~) and (i ,r)  --* ( i , r +  1) are arrows in .A. 
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This shows (c) and (h) in this case. If otherwise Tai,r ~ X ,  then j ( i )  = r + 1, 

(i, r + 1) ~ A, and the arrows described above are all arrows in A beginning in 

(i,r).  We have in this case A(i ,r  + 1) = [ap,0,ai,r+l], where av,0 = c(Tai,,.). 

Then we choose .A such, that (i, r + 1) E .A~+I and (i, r) ~ (i, r + 1) is an arrow 

in .4. Hence (h) is satisfied in this case. 

Therefore we have shown (a)-(e) and (h). Furthermore the proof gives, that 

every ( i , j )  E A,  C .A~ has at most two successors in .4, which are not in .A0 = .4o. 

Hence every ( i , j )  E Bo := ~(.4,)  = .4~ has at most two successors in B1 U B2. 

Now we suppose that (i, r) E A~ \ .4~. Let s E J be such, that .4(i, r) _C Z,. 

If there exists a p  E {1 ,2 , . . . , 2N}  and a k E { 0 , 1 , . . . , r -  1} with ap,0 E E(T)  

and ]~(fii,~) - 7r(%,k)] < 7?0, then we say (i, r) E B2, otherwise we say (i, r) E BI. 

Suppose that (i, r) E B2. By (3.4) and (3.5) we can assume, that ap,t q~ E(T)  

for l E {1 ,2 , . . . , k} ,  ap,k E Z,, 5p,k E Z, and I (ap,k)- 7r(ap,k)l < t/0. Set 

¢ ( i , r )  := %,k. By the definition of al  and a2, and as 7?o -< ¼ min{oq,a2}, we 

get I~-(x) - ~r(ap,~,)l < 70 < 7/for all x E A(i, r), which shows (j). Furthermore 

(3.1) gives I ~ ( T z ) -  zr(T%,k)l < ½min{r/,al,OL2) < 77 for all z E A(i,r).  By 

(3.3) this property shows, that every ( i , j )  E B2 has at most two successors in 

.A, and that ( i , j )  E B2, (u,v) E .At and ( i , j )  ~ (u,v) imply (u,v) E B2 and 

¢(i,j) ---, ¢(u,o) .  Hence (1) is shown. Let (u,0) E .40 satisfy ap,k E A(u,O). 

Then A(u,0) C_ Z,, which implies .4(u,0) C_ 2, .  Furthermore if t E {1,2 , . . .  ,N} 

satisfies A(u,0) = Yt, then (3.2) gives ~'(inflT"t_l) < ~'(x) < ~ ' ( sup~+l)  for all 

e a(i,r) (we set inf I~'0 := - o o  and sup 17"N+1 := c~). Hence .4(i,r) is y-close  

to ¢i.(u, 0), and this shows (k). 

Now suppose that (i ,r) E B~. Then we have either ( i , r  - 1) E At-1 or 

(i ,r  - 1) E B1. Hence we have Ig'(x) - ~r(Tai,r-,)l < r/0 < r/for all x E ,4(i,r). 

Hence (3.3) gives ai,~ = Tai,~-i E X .  This gives (g), and (3.1) gives 1#(7'z) - 

lr(Tai,r)l < ½ min{r/,~l,a2} < r/for all x E f t( i ,r) ,  which shows (i). Using (3.3), 

the definition of al  and a2 and the fact 7/0 < ¼min{al,o~2} this shows, that 

every ( i , j )  E B1 has at most two successors in .A, and ( i , j )  E B1, (u , , )  E .Ar 

and ( i , j )  --* (u, v ) imply  (u, v) E B1 U B2. Now we have shown (a)-(1). 

As every path co ~ Cl ~ --. ~ c, of length s < r in .A with co E .,40 is in 

.A~-I, it remains to show (m)-(o) for s = r. Suppose that (q,0) E .A0, ( i , j )  E .4~, 

and that Co = (q, 0) ~ ca ~ . . . ~  cr = ( i , j )  is a path of length r in .A~. Then 

co = (q, O) --* cl ~ . . .  --* c~-1 is a path of length r - 1 in .A~-I- Suppose that 

c,-1 = (io,jo). 
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Suppose at first ( i , j )  E BoUB~. We have then (io,jo) E BoUB1 and there exists 

a path do -- (q,0) --* dl - '  -. .  --* dr-1 in A,-1,  where A(d , -1 )  = [ak~,t~,ak2,h] 

with (kl, 11), (k2, h )  E Ar-1 ,  such that either ~'(ak~,l,) = 7r(aio,Jo) or 7r(ak2,h) = 

~r(aio,jo). Furthermore (io,jo) E Bo implies dr-1 = (io,jo), and (io,jo) E B1 

implies t~'(x) - ~'(aiojo) [ < ~7o for all z E f t(io,jo).  If ( i , j )  E Bo, then we have 

(io,jo) E Bo and (io,jo) -~ ( i , j )  in A. Hence (c) implies (io,jo) ~ ( i , j )  in ,4, 

which shows (m) in this case. If otherwise ( i , j )  E B1, then (h) and (i) give, 

that we can assume I~(x) - ~r(Tak~,l~)l < T/o for all z E A( i , j ) .  As ( i , j )  E BI 

(3.3) gives ak~,l~+l = Tak~,h E X, and A(i , j )  is 3~-close to .4(b), where b E ,4o 

satisfies ak2,h+l E A(b). Hence there exists a dr E A r  with dr-1 "-* dr and 

ak2,h+l E A(dr). Therefore A ( i , j )  is :~-close to .z].(dr). Now (i), the definition 

of a l  and the fact ~?0 < ~ give ~r(ak2,h+l) = ~r(ai,i). This shows (m). 

Now suppose that (p,k)  satisfies k < j and [~ ' (z) -  ~r(%,k)[ < 7?0 for all 

x E f t ( i , j ) ,  and there exists a t E J with ap,k E Zt and A ( i , j )  C_ Zt. Then there 

exists a (p0, ko) with k0 < jo and ~r(Tapo,ko) = ~r(%,k), and there exists a to E d 

with apo,ko E Zto and A(io, jo)  C_ Zto, such that either [ff'(z) - 7r(%o,ko)[ < 7?o 

or (io,jo) E Bo and %o,ko E { in fA( io , jo ) , supA( io , jo ) } .  Set Q := {do = 

(q,0) --* dl --" "'" --' dr-1 is a path of length r - 1 in .~ -1  with X~-l(do '-' 

d l  ~ . . .  --* d r - l )  = X , - l ( c o  ~ c~ --, - . .  ~ c , - , ) :  I ~ ( x ) -  ~(apo,ko)l  < 

~/0 for all z E .3,(d,-1), or dr-1 E B0 and aro,k o E { i n f A ( d r - 1 ) , s u p A ( d r - 1 ) } }  

and Qo := {do = ( q , O )  --+ d l  ~ . . .  --~ dr-1 e Q : I~ ' (x ) -  7r(apo,ko)l < 

rio for all z E -~(d,-1)}. There exist (u l , v i ) , (uz , v~) ,  which satisfy Co) for s = 

r - 1  and (p, k) replaced by (Po, ko) (observe that the property [5~,~,, a~,~2] C_ Zto 

remains true in the case (io,jo) E Bo). We have that the elements of { ¢ i ( d , _ ~ )  : 

do = (q, O) - .  dl ~ . . .  ~ dr-1 E Q} are pairwise disjoint. Hence the elements of 

{~'A(dr-1) : do = (q, O) ~ dl - * . . .  ~ dr-~ ~ Q} are also palrwise disjoint. By 

(3.3) we get, that at most one element of {4-1  : do --, d~ --* . . .  ~ dr-1 q Q0} 

has more than one successor in .A. If Q\Qo # ~, then it contains a unique element 

do ~ d~ ~--* d~-l, and if dr E .~r satisfies d , - i  --* dr and I~(z) - r(%,~)l < 7?o 

for all z ~ .3,(dr), then dr is uniquely determined by these properties, and every 

element of {dr-,  : 4 --* dl --* .-- --, dr-1 E Q0} has at most one successor in 

.,4. As every do = (q, 0) --, d~ ~ . . .  ~ dr with xr(do ~ dl --* . . .  --* dr) = 

Xr(Co ~ c~ ---* "" ~ Cr) and l~'(x) - rr(%,~)l < 7?o for all x E f4(dr) satisfies 

A(dr) C T[a, , ,v , ,au, ,~]  n Zt or dr-~ E B0, (3.1) gives (o). This finishes the 

proof of this lemma. | 
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4. Cont inui ty  of  the  pressure  

In this section we shall use the results of Section 3 to prove continuity results 

about the pressure. We consider a weighted piecewise monotonic map (T, f ,  Z) 

of class W °. 

THEOREM 1: Let (T, f, Z) be a piecewise monotonic map of class W °, and sup- 
pose that 

I 

p(R(T),T, f )  > lim ±S.(R(T), f). 
n"*O0 n 

Then for every e > 0 there exists a 6 > O, such that (T, ], Z) is 6-close to 
(T, f, Z) with respect to the W°-topology implies 

p(R(T), T, f )  - ~ < p(R(T), ~', f ) .  

Proof." Let ~ > 0. We can assume, that e is small enough to ensure 

g 
(4.1) p(R(T), T, f )  > 5 + ,--.oolim 1-S,(R(T),n f )"  

By the pieeewise continuity of f there exists a finite partition 

Y = {Y1,Y2,... ,YN} with Y1 < Y2 < "'" < YN of X refining 2 ,  such that 

g 
(4 .2)  sup I f (x )  - l ( u ) l  < 

Y E Y  z , y E Y  -3" 

If x E Y for a Y E Y, then define 

f l ( x )  :=  sup f(v). 
vEY 

Then fl is (more exactly: can be extended to) a piecewise constant function .#1 : 

X ---} R. By the definition of fl we get by (1.2) p(R(T),T,f)  < p(R(T),T,f~). 
Let (Ty, f l ,  Y) be the completion of (T, f~, y )  with respect to y (for simplicity 

we shall use the notation (Ty, f~, y )  for this completion). Now (4.1) gives 

p(R(T),T, fl) > lim 1S,(R(T) , f l ) .  
n ' - ' * O 0  n 

Hence Lemma 5 gives the existence of an r E N, such that for every variant 

(.A, ---~) of the Markov diagram of T with respect to y there exists an irreducible 

C _CAr with 

g g 
(4.3) logr(Fc(fl)) > p(R(T),T, f l ) -  5 >_p(R(T),T,f) 3 " 
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Fix this r for the rest of this proof. By Lemma 6 there exists a 8 E (0, ~), such 

that the conclusions of Lemma 6 are true with respect to this r, if (T, ,~) is a 

piecewise monotonic map, which is 8-close to (T, Z) in the R°-topology. 

Suppose that (T, f ,  2 )  is a piecewise monotonic map of class W °, which is 

g-close to (T, f, Z) in the W°-topology. By Lemma 1 and (4.2) there exists a 

finite partition ~ = {121,122,... ,12N} with I21 < 122 < "'" < 12N o f ) f  refining Z, 

such that y is 6-close to y,  and 

inf f (x)  >fl(Y)  2e 
• e ~  - 3 ' 

where y E Yj, for all j E {1, 2 , . . . ,  N}. Let (A, ~ )  and (.A, ~ )  be the variants of 

the Markov diagram of T, resp. T, with respect to Y, resp. y,  occurring in the 

conclusion of Lemma 6. If x E 12 for a I2 E Y, then we define 

f2(x) := inf_ f(y). 
yEY 

Then f2 : X -~ R is a piecewise constant function, which satisfies p(R(T), T, f~) 
<P(R(7"),7",f)andf2(Y)>f'(x) - ~ ' -  T, i f x  ~ Y), Y e 12# for a j ~ {1,2,.  .. ,N} .  

Denote by (T~, f2, P) the completion of (T, f2, ~) with respect to y. 

By (4.3) there exists an irreducible C _C Ar with 

logr(Fc(fl)) > p(R(T) ,T , f )  3" 

Now consider the matrix -~(c)(f2), where ~ : A~ ~ .A~ is the function described 

in Lemma 6. For c, d E C we get by (4), (5) and (6) of Lemma 6, that 

F~(c),~(d)(f2) ~ e- ~ Fc,d(f, ). 

Using (3) of Lemma 6 and (2.8) and (2.9) this gives 

r(P(f~)) >_ r(P~(c)(A)) >- ~-~(&(f , ) ) -  

Now (2.12) and (4.3) give 

p(R(T) ,T , f )  > p(R(~'),T, f2) = logr(/f'(f2)) > 
2e 

logr(Fc(f,)) - "-~ > p(R(T) ,T , f )  -~ .  I 
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This theorem shows, that the topological pressure is lower semi-continuous, if 

p(R(T), T, f )  > lim tS,,(R(T), f). 
B-'-*O0 n 

It generalizes Theorem 9 of [8], where the lower semi-continuity of 

T H p([0, 1], T, f )  

with respect to the C°-topology is shown for continuous piecewise monotonic 

maps T :  [0,1] ~ [0,1] and a fixed function f :  [0,1] ~ R with p([O, 1],T,f) > 
sup f .  Furthermore the lower semi-continuity of the topological entropy with 

respect to the R°-topology follows from Theorem 1, if htop(R(T), T) > 0. If 

otherwise htop(R(T), T) = 0, then the lower semi-continuity is trivial. Hence 

Theorem 1 implies the well known result (Theorem 5 of [6]) on the lower semi- 

continuity of the topological entropy. Our proof is similar to the proofs in [6] and 

[8], where an approximation by "horseshoes" is used instead of our approximation 

by finite subsets of the Markov diagram. Now we shall give an example, where 

the pressure is not lower semi-continuous. 

Define Z := {(0,1 1 13 (1 23 2 1 g),(g,  ( ~ , ) } ,  define 

2x for x e [0, ~l, 

for • e 

(4.4) Tx := 2x - } for x E [}, }], 

2 - 2 x  forz~[} , l ] ,  

and define 

(4.5) 

0 

f(x) := 30x -- 10 

30 - 30x 

for x E [0, }], 

for x E [31-, 32-], 

for x E [~,1]. 

Then (T,Z) is in E ~ and (T,f,Z) is in W ~.  We get R(T) = [0,1] and 

p([O, 1],T,f) = 10. Observe that the nonwandering set of T is [0,}] U {}}. 

The function f is so large at the isolated fixed point 2 ~, such that it dominates 

the pressure on the rest of the nonwandering set. As we shall see below this fixed 

point can be destroyed by an arbitrarily small perturbation. The condition 

p(R(T), T, f )  > lim 1S,(R(T), f) 
n - -~oo  n 
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excludes such a phenomenon. For e • (0,1) we define 

(4.6) 

2z 

~ - -  2 x  

Tcx : =  2 • 
(2 - e ) z  - ~ + 

2 - e - (2 - e ) z  

0 1 for z • [ ,~], 
for z • [1, ~l, 

1 2 for x • [~, ~], 
2 1 for x • [~, ]. 

Then (T,, Z)  is e-close to (T, Z) in R ~ ,  and (T,, f ,  Z)  is e-close to (T, f ,  Z) in 

w ~ .  m r t h e r m o r e  we  have  R ( T , )  = [0,11, the  nonwander ing  set o f  T~ is [0, ] l ,  

and p([0, 1], Te, f )  = log 2, which shows, that the topological pressure is not lower 

semi-continuous in this case. 

Now we show a result on upper semi-continuity properties of the pressure. 

THEOREM 2: Let (T, f ,  Z) be a piecewise monotonic map of class W °. Then/'or 
every e > 0 there exists a 6 > O, such that (¢, ], 2)  is 5-close to (T, f, Z) with 
respect to the W °-topology implies 

p(R(T), T, f )  < max{p(R(T), T, f), log r(G(f))}  + e .  

Proof." Let e > 0. By the piecewise continuity of f there exists a finite partition 

y of X,  which refines Z, such that 

e 
sup sup I f ( x ) -  f (y ) [  < ~. 
Y E Y  z , y E Y  

Again we suppose, that y = {Y1,Y2,...,YN} with Y1 < Y2 < "'" < YN. I fx  • Y 

for a Y • Y, then define 

f l (x)  := inf f(y). 
veY 

R is a piecewise constant function, and we have for j • Then fl : X 

{ 1 , 2 , . . . , g -  1} 

e 
(4.7) Ifl(x) - f l ( Y ) l  < ~ for x e Yj, y • Yj+I,  

if there exists a Z • Z with Yj O Yj+I C_ Z. We have 

p(R(T), T, f~ ) <_ p(R(T), T, f)  

and r (G(f l ) )  < r (G(f)) .  Denote by (Ty, fl,  y)  the completion of (T, f~, Y) with 

respect to y .  If (.4, --,) is a variant of the Markov diagram of T with respect to 
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Y, and if d E .A, then let fd be the unique real number with fl (x) = fd for all 

x E A(d). 

Define 

(4.8) Ro := exp(max{p(R(T) ,T ,  f l ) , l ogr (G( f l ) ) }  + e) . 

By (2.12) we get 

(4.9) r(F.a(fl )) = e p(R(T)'T'II) 

for every variant (.A,-+) of the Markov diagram of T with respect to y.  As 

Ro > e~" max{e p(R(T)'T'I~), r(G(fl ))} we can choose an 

R E (e "~ max{e p(R(T)'T'f~), r(G(fl ))}, R0). 

As e - ~ R  > r(F.a(fl)) and e - ~ R  > r(G(fl))  we get by (2.5) and (2.9), that 

there exists a C E R, such that 

(4.10) sup e~" R - '  ][FA(fl)s[[ _< C 
sEN 

for every variant (,4, 4 )  of the Markov diagram of T with respect to y ,  and 

sup e ~  s a -s t ia(£)si l  _< C .  
sEN 

(4.11) 

We can assume that 

Fix an r E N with 

(4.12) 

' "  1 el,(~)}. C _> max{2,8eTR- sup 
zEXy 

~/(r + 1)2C 3 R < R0.  

By Lemma 6 there exists a 6 E (0, 4), such that the conclusions of Lemma 6 are 

true for every (T, Z), which is 6-close to (T, Z) in the R°-topology. 

Let (T, f ,  Z) be a piecewise monotonic map of class W °, which is ~-close to 

(T, f,  Z) in the W°-topology. By the choice of Y Lemma 1 gives the existence 

of a finite partition ~; = {~ ,  17~,..., IT'N} with IT1 < I>2 < . . .  < ]~g of .~ refining 

Z, such that ~) is b-close to y,  and 

sup ](x) < fl(y) -I- 2' 
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where y E Y/, for all j E {1,2, . . .  ,N}. I fx  E]Y for a l ) E 2,  then define 

.f2(x) := sup ](y). 
yEY 

Then f2 : -X ~ R is a piecewise constant function. We have p(R(T), ~', ]) < 
p(R(~),~,/~), and A(Y) < f l ( z )  + ~ holds for • e Y~, ~ E ~ for a j e 

{1 ,2 , . . . ,N} .  Denote by (To),f2,Y) the completion of (SF, f 2 , y )  with respect 

to y .  Let (.4, 4 )  and (.A,-~) be the variants of the Markov diagram of T, resp. 

T, with respect to Y, resp. y ,  occurring in the conclusion of Lemma 6. For 

d E .4 let ]a be the unique real number with f2(x) = .fd for all x E .4(d). Set 

F(f l )  := (Fc,d(fl))c,dEA and ~'(f2) := (Fc,d(f2))c,dEA. By (4.7) and by (5) and 

(6) of Lemma 6 we get for c E -At and d E Ar 

(4.13) 
3 c  

]~ < fd + ---f , if .4(c) is S-close to .4(~2(d)) • 

r ~- By (2.9) we have r(F(f2))  < [IF(f~) [1". Lemma 4 (formula (2.10)) gives 

(4.14) 

"(F(]2))  ~ < IIF(A)ql = IIF~(A)rl l  = 
r - - I  

su, E II i° , 
cE-~o co=c-- '*cl . . . . .  c~ j = o  

where the sum is taken over all paths co ~ cl --* " "  --~ cr of length r in .At 

with co -- c. Fix c E .Ao. Then by (1) and (3) of Lemma 6 there exists a unique 

d E Ao with ~(d) = c. 

Let Pc be the set of all paths Co ~ cl ---* - "  --~ c~ of length r in .At with co = c, 

and for s E {0, 1 , . . . ,  r} let Pc(s) be the set of all co ---* cl ~ " -  ~ c~ E Pc with 

s = m a x { j  E {0 ,1 , . . . , r}  : c  i EBoUB1}.  HencePc = U : = o p c ( s ) .  Define for 

s ~ { 0 , 1 , . . .  ,r} 

(4.15) He(s) := 

r - 1  

E II 
Co"'*cl . . . . .  c,.E'P¢( s) j=O 

Then we have 

(4.16) Hc := 
r - I  

Co-"*cl"*'"--*crE"Pe j~O s~O 
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Let s • {0, 1 , . . . ,  r}. If co ~ Cl -----} . .  • ---} c r  • ~Dc(3) and if (do, d l , . . . ,  d~) = 

X(Co "-+ c~ ---*... ---} Cr), then (1) and (8) of Lemma 6 give dj • Ar  for all j _< s, 

do = d, and d I • ~ for a l l j  > s. Furthermore we get by (8) of Lemma 6, 

that .4(cj) is ))-close to ft(cp(dj)) for all j • {0 ,1 , . . . ,  s}, and if s _> I, then 

do ~ dl ~ . . .  ~ d, is a path of length s in A~ with do = d. Hence (4.13) gives 
- 3 ~ t  

e Ao < e'Z-e Ido and if s _> 1, then 

s - - I  s--1 

IIJ°  __ I I J "  
j=o j=o 

If s _< r - 2, then we get by (4), (6) and (8) of Lemma 6, that ds+l "-} ds+2 ---+ 

• .. ~ dr is a path of length r - s - 1 in ~, and A(cj)  is :~-close to ,4(~(dj)) for 

all j • {s + 1,s + 2, . . .  ,r}, where dj • A0 satisfies dj • A(di) .  Therefore (4.13) 

gives 

r--1 r--1 

H eS°~ ~ e~ ' ( r -s -U H el'(dJ)' if s < r -  2. 
j = s + l  j----s+1 

Hence using (4.15) we get by (9) of Lemma 6 for 1 < s < r - 2 

s--1 r--1 

He(s) < (2r + 1)e~-" E e Y " ( H  ey'i)( H eY'(dD) < 
(do,dr ..... d r ) E X ( ~ e ( s ) )  j=O j = s + l  

s - 1  

8 e ~ r  sup e$ ' (X)( r+l ) (  E H ey' i)  
x E X y  do=d---*dl ---* . . . .  ds j=O 

r- -s - -2  

(sup E H 
aEG b o : a - * b l - ' , ' " - ' * b r - s - 1  j = 0  

3c 1 As C >_ 8 e " r R -  sup e I1(~) we get by (2.4), (2.8), (4.10) and (4.11) 
z E X y  

He(s) < C R ( r  + 1 ) C R S C R  r-s-1 = (r + 1)CAR r . 

3c 1 Analogously we get using C _> 8e~ 'R-  supz~xr e li(x), C _> 2, (2.4), (2.8), (4.10) 
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and (4.11) 

r - 2  

He(O) <8e ~r sup e A(*) (r -4- l)(sup ~ H ell(hi)) < 
x E X y  aE~ bo=a--*bl-'* . . . .  br-1 j=0 

CR(~ + 1 ) O R  r-1 < (~ + 1)C3R r , 

r--2 

H c ( r - 1 ) < 8 e  ~r sup cA (') (r + l)( Z H ey ' j )<  
z E X y  do=d--*dt-*..."-*dr_ 1 j=O 

c R ( ~  + 1 ) C R  r- '  < (~ + 1)C3a ~ , 
r - 1  

Ho(O "'" <_2e'r (r + 1)( E H J' ) -< 
do=d--*dl--*...--*d, j=O 

c ( ~ +  1)OR ~ < (~ + 1)C3n ~ 

Hence (4.16) gives Hc ~_ (r + 1)2C3R r for all c E .A0, and by (4.14) we get 
r(~'(f2)) r <_ (r + 1)2C3RL Now (4.12) implies 

r(#(]~)) < ~/(r + 1 ~ c  3 a < R0. 

By (2.12) and (4.8) this gives 

p(R(T), T, f )  <_ p(R(T), T, f2) = log r(F(f2)) < 

log Ro = max{p(R(T), T, fl ), log r(G(fl ))} + e 

<_ max{p( R(T), T, f),  log r(G(f) ) } + c. 

| 

COROLLARY 2.1: Let (T, f,  Z) be a piecewise monotonic map of class W °, such 

that one of the assumptions of Lemma 2 holds, and suppose that 

p(R(T),T, f )  > lim 1-Sn(R(T), f). 
n'--*O0 n 

Then for every e > 0 there exists a 6 > O, such that (T, f ,  Z) is 6-close to 
(T, f,  Z) with respect to the W°-topology implies 

Proof: 
| 

Ip(R(T), T, ]) - p ( n ( T ) ,  T,  f)l < e -  

This is an easy consequence of Lemma 2, Theorem 1 and Theorem 2. 
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Now we want to give an example. Define Z := {(~, 2), (2, 1)}, define 

2 x -  2 for x E [I, 21, 
(4.17) Tx := 2 - 2 x  for x E [2, 11. 

Then (T, Z) is a piecewise monotonic map of class Eoo and (T, 0, Z) is of class 

W °°. We have R(T) 2 = {~}, p(R(T),T,O) = htop(R(T),T) = O, 
2 +  ={~,2-a ,a2+,l} with a ---* b if and only if a, b e  {2- ,~  } , a n d l ° g r ( G ( 0 ) ) =  

log 2. For e E (0, I] set 

(4.18) T~x := Tx + e . 

Then (T~, Z ) i s  e-close to (T, Z) in Roo, and (T~, 0, Z) is e-close to (T, 0, Z) in 

Woo. We have R(Te) = [ 2 - e ,  2 +~] and p(R(Te),T~,O) = htop(R(Te),Te) = 

log 2 = log r(G(0)), which shows, that the topological pressure is not upper semi- 

continuous in this case. 

Theorem 2 generalizes Theorem 2 of [5], where a similar result is shown for 

the topological entropy. Also Theorem 1 of [4], which gives a similar result for 

the topological entropy in the case of a continuous piecewise monotonic map T, 

can be easily deduced from Theorem 2. To calculate the upper bound of the 

topological entropy given in [4] we apply Theorem 2 to (T, f,  Z), where T and f 

are continuous. Define 

(4.19) 

GT(f) := max( 
card {j e { 0 , 1 , . . . , n -  1}: Tix  e El(T)} log2+ 

n 
n - |  

1 i ~  ° f ( T J x ) : x  e El(T) i s  a point of period n},  
n 

where we s e t  GT(f) : =  --OO, if El(T) contains no periodic points. 

COROLLARY 2.2: Let (T, f ,  Z)  be a piecewise monotonic map of class W °, which 

satisfies that T and f are continuous on X.  Then for every ~ > 0 there exists a 

5 > O, such that (T, f ,  Z) is 5-dose to (T, f ,  Z) with respect to the W°-topology 

implies 

p( R(T), T, f )  < max{p( R(T), T, f) ,  GT(f)  } + ~ . 

Proof." By Theorem 2 it suffices to show logr(G(f)) = GT(]), if logr(G(])) > 

p(R(T), T, f) .  The definition of (•, 4 )  and the continuity of T and f imply that 
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T~r(a) = 7r(b) and f(~r(a)) = ]z(a), if a,b E G and a ~ b. Hence (2.4) gives for 

n E N  
n--1 

lla(1)"ll =sup H = 
h E 6  bo=a_ . .b  1 . . . . .  bn j=0  

r*--I 

sup E e x p ( E  f(TJ~r(a))) = 
aEO bo----a--*bt . . . . .  bn j=O 

n - 1  

sup(exp( E f(TJTr(a))))(card {bo = a ~ bl --~ . . .  ~ bn}) = 
aEg j=o 

n--1 

sup(exp(  ) ) (2  . . . . .  • 
aE~ j=o 

Using (2.5) this implies log r (G(f ) )  = GT(f). | 

Remark: The proof shows, that log r (G(f ) )  = GT(f), if 

log r(G(f)) > p(R(T), T, f )  or GT(f) > p(R(T), T, f) .  

5. C o n t i n u i t y  of  t h e  H a u s d o r f f  d i m e n s i o n  

In this section we shall use the results of the preceeding sections and of [7] to 

prove continuity results about the Hansdorff dimension of R(T). Throughout 

this section let (T, Z)  be a piecewise monotonic map of class E 1. Denote by 

(Tz, T ' z ,  Z) the completion of (T, T',  Z)  with respect to Z. If we set 

n--1 

(5.1) a := limsup 1 log sup H [T'z[-l(bj) '  
n--*oo n bo--*bw.-*...-*b,~ j=0  

where the supremum is taken over all paths b0 ~ bl --, . . .  --0 b, of length n in 

~, then using (2.4) and (2.5) we get for 0 _< tl _< t2 

(5.2) t2a <_ l og r (G( - t2  log IT'D) _< log r ( G ( - t l  log IT'I)) + (t2 - tl)Ot • 

This gives, that either logr(G(-tlog[T'[)) > 0 for all t > 0 (we set to := 

oo in this case) or there exists a to >_ 0 with logr(G(-tolog[T'])) = 0 and 

l o g r ( G ( - t  log IT'D) < 0 for all t > to. Now set 

(5.3) dT := min{t0, 1}.  

Define for t E R 

(5.4) bT(t) := p(R(T), T, - t  log IT'D. 
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LEMMA 7: Let (T, Z)  be a piecewise monotonic map of class E 1. Then bT is 

continuous and strictly decreasing, has a unique zero tR, and HD(R(T))  = tR. 

Proof'. By Lemma 9 of [7] R(T) satisfies the requirements of Theorem 2 of [7]. 

Lemma 3 of [7] gives, that bT is continuous and strictly decreasing, and has a 

unique zero tR. Now Theorem 2 of [7] shows HD(R(T))  = tR. | 

THEOREM 3: Let (T, Z) be a piecewise monotonic map of class E 1. Then for 

every e > 0 there exists a 8 > O, such that ( T, Z) is G-close to ( T, Z) with respect 

to the R 1-topology implies 

HD(R(T))  - ~ < HD(R(T))  < max{HD(R(T)),  dT} + ~. 

Proof." We show at first, that H D ( R ( T ) ) - ~  < HD(R(7~)), if(7 ~, ,~)is sufficiently 

close to (T, Z). If HD(R(T))  = 0, this is trivial. 

Suppose HD(R(T))  > 0. We can assume, that ~ < HD(R(T)).  Lemma 7 gives 

bT(tR -- 6) > 0. By (1.3) we get, that 

lim 1S , (R(T) , - t l og IT ' [ )  < 0 for all t > 0, 
B ---* OO n 

as there exists a q with (T~)' is piecewise continuous and inf [(Tq)'l(x) > 1. 
zeR(T) 

Hence 

lim 1S, (R(T) , - - ( tR  -- c)log [T'[) < 0 
n - - * o o  n 

< bT(tn -- ¢) = p(R(T), T,--(tR -- ~)log IT'[). 

By Theorem 1 there exists a 61 > 0, such that (T, Z) is 81-close to (T, Z) in R 1 

implies bq.(tn - 6) > 0. Now Lemma 7 gives HD(R(T))  - ~ < HD(R(T)).  

Now we show HD(R(T))  < max{HD(R(T)),  dT} + ~, if (7', Z)  is sufficiently 

close to (T,Z) .  Set tl := max{HD(R(T)) ,dT}.  If tl = 1 the result is trivially 

satisfied. 

Suppose tl < 1. We can suppose, that ~ < l - t 1 .  By Lemma 7 we get 

bT(tl + ~) < 0, and by (5.2) and (5.3) we get log r( G( - (  tl + ~)log ]T'D) < 0. 

Hence Theorem 2 gives, that there exists a 82 > 0, such that (T,,~) is 52- 

close to (T, Z)  in / /1  implies bq.(tl + 6) < 0. Now we get by Lemma 7, that 

HD(R(T))  < max{HD(R(T)),  dT} + ~. 

If we set 8 := min{81,52}, this gives the desired result. I 
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COROLLARY 3.1: Let (T ,Z)  be a piecewise monotonic map of class E l, such 

that one of the assumptions of Lemma 2 holds. Then for every ¢ > 0 there exists 

a ~ > O, such that (7", 2 )  is 5-dose to (T, Z)  with respect to the R 1-topology 

implies 

IHD(R(T)) - HD(R(T))] < e .  

Proof: Using (5.3), Lemma 2 and Lemma 7 we get dT <_ HD(R(T)). Hence the 

result follows from Theorem 3. I 

Now we give an example. Let (T, Z) be defined as in (4.17). Then we have 

H D ( R ( T ) )  = 0 .  A s  IT'(x)l = 2 for all z e ( ] ,  ] ) U  ( ] ,1 ) ,  we get for t • R that 

log r ( G ( - t  log [T'[)) = (1 - t)log 2. This implies dT = 1 by (5.3) (we have to = 1, 

where to is the quantity introduced before (5.3)). For ¢ • (0, ]] let (Te, Z) be 

defined as in (4.18). Hence (Te,Z) is e-close to (T ,Z)  in R °°. Furthermore 

we have that HD(R(T~)) = 1, which shows that the Hausdorff dimension is not 

upper semi-continuous in this case. 

Finally we consider the case, where T is continuous and [T'[ can be extended 

to a continuous function on X. Set 

(5.5) 
maxS cardt  {j e {0, 1 , . . . , n  - 1}: Tix  e El(T)} 

DT log2:  
log I(T")'l(x) 

z E El(T)  is a point of period n} , 

where we set DT := 0, if El(T)  contains no periodic points. Observe that 

if T is continuous and if [T'I can be extended to a continuous map on X, then 

log [(Tn)'[(x) = ~ j ~ o  1 log [T'I(Tix) exists for every periodic point x and for every 

n E N. Furthermore the property infxex, [(Tq)'[(x) > 1 for a q e N implies 

log I(Tn)'i(x) > 0 for every x with period n. 

COROLLARY 3.2: Let (T, Z)  be a piecewise monotonic map of class E 1, which 

satis~es that T is continuous on X ,  and IT' I can be extended to a continuous 

function on X.  Then for every e > 0 there exists a ~ > O, such that (T, Z)  is 

6-close to (T, Z)  with respect to the R l-topology implies 

HD(R(T)) - e < HD(R(T)) < min{max{HD(R(T)), DT}, 1} + e .  

Proof: By Theorem 3 it suffices to show dT< DT, if d T >  HD(R(T)). By the 
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proof of Corollary 2.2 we have for t E (HD(R(T)), to) that 
n - - 1  

log ~ (G( - t log  IT'f)) =max{  -k log 2 - t ~ log IT'l(T'x) : x e P}  
n n j=0 

max{k logZ _ t logl(T")'l(~) : x e P}  
n n 

where P is the set of all periodic points, which are contained in El(T),  n is the 

period of x, and k := card {j E { 0 , 1 , . . . , n -  1}: TJx E El(T)}. As there exists 

a q E N with inf~eR(T)I(Tq)'l(~) > 1, we get log I(T")'l(~) > 0 for every x ~ P. 

For a fixed x E P this gives that 

_ t_ k log 2. k log2 - n l°g ](T")'l(x) < 0 for all t > logl(T.), l(x) 
n 

By (5.5) this implies log r( G ( - t  log [T'I) ) < 0 for all 

k 
t > maX{log i(Tn),i(x) : x E P} = DT 

and log ~(C(--DT log tT'I)) = 0. Hence (5.3) gives dT < to = DT. | 

Remark: The proof shows, that to = DT, if t0 > HD(R(T))or  DT > HD(R(T)). 
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