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ABSTRACT

In this paper a piecewise monotonic map T' : X — R, where X is a finite

o0
union of intervals, is considered. Define R(T) = (| T-"X. The influence

n=0
of small perturbations of T' on the Hausdorff dimension HD(R(T)) of R(T')
is investigated. It is shown, that HD(R(T')) is lower semi-continuous, and
an upper bound of the jumps up is given. Furthermore a similar result is

shown for the topological pressure.

Introduction
Let X be a finite union of closed intervals, and consider a piecewise monotonic
map T : X — R, that means there exists a finite partition Z of X into pairwise
disjoint open intervals with |J,¢ 2Z = X, such that T | Z is bounded, strictly
monotone and continuous for all Z € Z. Set R(T) := °%,T-"X, which can
be considered as the set, where T™ is defined for all n € N. We have R(T) =
Npen Xn, where for » € N we define X, := ﬂ;’z_ol T-iX, which can be considered
as the set, where T™ is defined. We consider the dynamical system (R(T), T),
and we are interested in the influence of small perturbations of T on the set R(T').
Such dynamical systems occur in a natural way. If T : [0,1] — [0,1] is a
plecewise monotonic map, and L is a maximal topologically transitive subset of
[0,1] with hyop(L,T) > 0, then there exists an X C [0, 1], which is a finite union
of intervals, such that L = 52, T-"X (cf. [2]).

n=0
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The “size” of R(T') can be described in different ways. We consider the topolog-
ical entropy hop(R(T),T), the topological pressure p(R(T),T, f) of a piecewise
continuous function f : X — R, and the Hausdorff dimension HD(R(T)). To
investigate the influence of perturbations of T on these quantities we have to
introduce topologies for piecewise monotonic maps. A function f : X — R is
called piecewise continuous with respect to Z, if f | Z can be extended to a
continuous function on Z for all Z € Z. We suppose that Z = {Z1,2,,...,Zx}
with Z; < Z, < --- < Zk. Let X be a finite union of closed intervals, let Z
be a finite partition of X into disjoint open intervals with Usze z~-Z: = X, and
let f: X — R be piecewise continuous with respect to Z. Then f is said to
be close to f, if Z = {Zy,Z,,...,2x} with Zy < Zy < -+ < Zx, and if for all
7 €1{1,2,...,K} the graph of f | Zj is contained in a small neighbourhood of
the graph of f | Z;, considered as a subset of R? (observe that this definition
depends on the partitions Z and £). Denote by R° the family of all systems
(X,T,2), where T : X — R is piecewise monotone with respect to Z. Two sys-
tems (X, T, Z), (X',T, Z) € R are said to be close in the R%-topology, if T and
T are close in the sense defined above for piecewise continuous functions. Let W°
be the family of all systems (X, T, f, Z), where (X,T,Z) € R° and f is piece-
wise continuous with respect to Z. We say that (X, T, f, 2),(X,T, f, 2)ew
are close in the W%-topology, if they are close in the R'-topology and f and
f are close in the sense defined above for piecewise continuous functions. Fur-
thermore let R! be all (X, T, Z) € R?, such that 7" is piecewise continuous with
respect to Z. (X,T,2),(X,T,Z) € R! are said to be close in the R'~topology,
if (X,T,T', Z) and (X,T,T", Z) are close in the W°-topology.

Theorem 1 of this paper says, that the pressure function p : W% — R is
lower semi-continuous in (X, T, f, Z) with respect to the W%-topology, if a cer-
tain condition on f, which generalizes p(R(T'),T, f) > sup,cx f(z), is satisfied.
Special cases of this result are already known. In [8] this result is obtained for
systems (T, f), where T is a continuous piecewise monotonic map on [0, 1], and
f:10,1] - R is continuous with sup,¢f 1) f(z) < p(T, f). Another special case
is the well-known result on the lower semi-continuity of hyop(R(T),T) in the
R%-topology (see [6]). In Theorem 2 we show that the jumps up of p: W® - R
in (X,T, f,Z) with respect to the W°-topology are bounded by the maximum
of p(R(T), T, f) and the logarithm of the spectral radius of the matrix G{f) (see
(2.2) for definition) associated to the graph (G, —) (defined in Section 2), which
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is defined in terms of the orbits of the critical points under 7 and which is similar
to the graph considered in [5]. This is a generalization of the results in [4] and
[5], where upper bounds for the jumps up of kwp(R(T),T) in the R°-topology
are given. A system (X, T, Z) € R! with the property, that there exists an n € N
with inf,ex, [(T")'(z)] > 1, is considered in Theorem 3. It is shown, that the
function (X,T,Z) — HD(R(T)) is lower semi—continuous in the R!-topology,
and an upper bound for the jumps up in a fixed (X, T, Z) in terms of the graph
(G,—) mentioned above, is given (see Section 5).

The proofs use a graph (D, —), called Markov diagram, associated to (X, T, Z).
In Lemma 6 it is shown, that (X, T, Z) and (X' ,T, Z) have “similar initial parts”
of their Markov diagrams, if they are close in the R’~topology. In order to use this
result to derive Theorem 1 and Theorem 2 we have to approximate a function f,
which is piecewise continuous with respect to Z, by piecewise constant functions.
Lemma 6 remains true, if we replace the partition Z by a suitable refinement
Y. This implies Theorem 1 and Theorem 2 by Lemma 6 of [7], which says that
for piecewise constant functions f the pressure p(R(T),T, f) can be obtained
as the logarithm of the spectral radius of a certain matrix F(f) (see (2.6) for
definition) associated to the Markov diagram. Then Theorem 3 follows from
Theorem 2 in [7], which says that HD(R(T')) equals the unique real number tg
with p(R(T), T, —tr log|T'|) = 0.

1. Definitions and notations

Suppose that X is a finite union of closed intervals. We say that Z is a finite
partition of X, if Z consists of pairwise disjoint open intervals with |J ¢ ; Z =
X. A function f : X — R is called piecewise continuous with respect to the
finite partition Z(f) of X, if f | Z can be extended to a continuous function on
the closure of Z for all Z € Z(f). For every ¢ € X at least one of the numbers
f(zt):=limy_,.+ f(y) and f(z7) := limy_.,- f(y) exist. We assume throughout
this paper, that for every z € X we have f(z) = f(z%) or f(z) = f(z7). A
function f : X — R is called piecewise constant with respect to the finite
partition Z(f) of X, if f | Z is constant for all Z € Z(f).

A piecewise continuous map T : X — R is called piecewise monotone, if
there exists a finite partition Z of X, such that T | Z is strictly monotone and
continuous for all Z € Z. We call (T,Z) a piecewise monotonic map of
class R’. We assume throughout this paper that Z = {2, Z2,...,Zk} with
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Zy <23 << Zk. (T, 2) is of class R, then we set E(T) := {inf Z,sup Z :
Z € Z} and Ey(T) := E(T)\ (R\ X). E(T) is the set of all endpoints of
elements of Z, and E{(T) is the set of all elements of E(T), which are inner
points of X. Furthermore we define R(T) := ﬂ;";o T-iX. We want to remark
that the elements of E(T') need not be neither discontinuities nor turning points
of T.

I (T, Z) is a piecewise monotonic map of class R? and f : X — R is a piecewise
continuous function, then we can assume that Z(f) is a refinement of Z.

Let n € Ng U {o0}. (T, Z) is called a piecewise monotonic map of class
R™,if (T, Z) is of class R® and T is piecewise C". T is piecewise C™ means, that
T0) is a piecewise continuous function with respect to Z on X for every j € Ny
with 0 <7 <n. (T, 2) is called a piecewise monotonic map of class E™ for
an n > 1,if (T, Z) is of class R™ and there exists a j > 1, such that (T7)' is a
piecewise continuous function on X := ﬂ{;; T-1X andinf, ¢ rey (TP (z)] > 1,
where we assume that |(77)'(z)| = min{|(T7)'(z7)|, (T7)'(z*)|} forall z € X;. If
(T, Z) is of class R™ and there exists a piecewise continuous function f : X — R,
such that fU) is a piecewise continuous function with respect to Z for all j € Ny
with 0 < j < n, then (T, f, Z) is called a weighted piecewise monotonic map
of class W". If (T, Z) is of class E" for an n € NU {co}, then (T, —tlog|T'|, Z)
is of class W1 for all t € R.

In order to define topologies on R"*, W" and E™ we define first topologies for
piecewise continuous functions and for partitions. Let ¢ > 0. Two continuous
functions f : (a,b) — R and f : (&,5) — R are e—close, if

(1) l|a— & < ¢ and |b—b| <¢,

(2) f(z) - f(z)| <& for all z € (a,b) N (&, ),

(3) sup,e(a,a) If(z) — f(&+)| <¢, if a < &, or sup,¢(,q) lf(m) —fla*)l <e, if

otherwise d@ < a,

(4) sup,¢(ip) |f(:1:)~— f ) <€ ifb<b,or SUP, ¢(5,5) 1f(z) — F(7)| < &, if
otherwise b < b.

We want to remark, that (a,b) N (,5) # @ by (1), if ¢ is small enough.
Suppose that X and X are finite unions of closed intervals. Let
Y = {,Ys,..., Yy} be a finite partition of X, where ¥; < V2 < .- <
Yn, and suppose that Y; = (¢;,d;) for j € {1,2,...,N}. Suppose that Y =
{171,}72,...,17N} is a finite partition of X, where ¥; < ¥ < --- < ¥, and sup-
pose that ¥; = (&;,d;) for j € {1,2,...,N}. Then we say the partitions ) and
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Y are e—close, if |¢; — ;| < € and |d; — d;| < € for j € {1,2,...,N}.

Now let f: X —» Rand f : X — R be piecewise continuous functions with
respect to Z(f), resp. Z(f). Then f and f are said to be e—close, if there exists a
finite partition Y = {¥;,Y2,...,¥Yn} of X refining Z(f) withY; < Yo < --- < Yn
and a finite partition Y = {¥1,¥5,... ,Yn} of X refining é(f) withY < ¥, <
.- < Yy, such that f | Y; is e—close to f | ¥; for j € {1,2,...,N}.

Observe that this definition implies that Y is e~close to Y, if f is e-close to f.

In Section 4 we shall need the following result.

LEMMA 1: Let f : X — R be a piecewise continuous function with respect to
the finite partition Z(f) of X, and let € > 0. Suppose that Y = {11,Y,,..., Yy}
is a finite partition of X, which refines Z(f), where Y <Yz < --- < Yn. Set

s:= sup sup |f(z) - f(y)l-

Y€EY z,yeY

If f: X — R is a piecewise continuous function, which is e—close to f, then there
exists a finite partition J = {}71,)72,...,171\/} of X withY; <Y, < - < f’N,
which is e—close to Y, such that for every j € {1,2,...,N}

sup f(z) < inf f(z)+s+e and inf f(z)> sup f(z)—s—c¢.
z€Y; z€Y; T€Y; T€Y;

Proof: By the definition of e-closeness there exist finite partitions
V= {WV,...,Vi} of X and V = {W},Vs,...,Vi} of X, such that V is e-
close to V and f | f/] is e—close to f | V; for all j € {1,2,...,1}, where we
assume Vi < Vo < - < Viand V; < Vo < -+ < V. We can assume, that
V is a refinement of ). Hence for every j € {1,2,...,N} there are numbers
ij,8; € {1,2,...,1} with ¥; = U;J=z, V. Now we define f’] = (inff/,-j,supf/,j)
and ¥ := {¥; :j =1,2,...,N}. Then J is e—close to Y. Let j € {1,2,...,N}.
By the definition of e—closeness, by definition of s, and as f is piecewise continu-
ous, we get f(z)—s—¢e < f(y) < f(z)+s+eforeveryz € Y; and every y € Y;,
which gives the desired result. |

Now we define the following topology on W°. Let (T, f, Z) and (T, 1.z ) be
both of class W°, and let ¢ > 0. Suppose that £ = {21,22,...,2;(} with
7y < 2y <+ < Zk. Then (T,f,2) and (ff’,f, Z) are said to be e—close in W?,
if

(1) T|Z; and T| Zj are e—close for j =1,2,..., K,
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(2) f|Z;jand fl ZJ- are e—closefor j = 1,2,..., K. Observe that this definition
implies that Z is e—close to Z, if (T, £, 2) is e—close to (T, f, Z).

If (T, 2) and (T, Z) are both of class R?, then (T, Z) and (T, Z) are said to be
e—close in RY, if (1) above is satisfied. This topology coincides with the topology
considered in [5]. If (T,Z) and (T, Z) are both of class R, then (T, Z) and
(T, 2,;) are said to be e-close in R", if (T, T, Z) and (T, TG, Z) are e—close in
WO for j € Ng, j < n. If (T,2) is of class E™ for an n > 1, if ¢ > 0 is small
enough, and if the map (T, Z) of class R is e~close to (T,Z) in R*, then (T, 2,;)
is of class E®. Two weighted piecewise monotonic maps (T, f, Z) and (T, f, Z) of
class W™ are said to be e-close in W™, if they are e~close in R” and (T, f(9, Z)
and (T, f(), Z) are e—close in WO for j € Ny, j < n.

Next we modify (X, T) in order to get a topological dynamical system.

Let (T, Z) be a piecewise monotonic map of class R%, and let )V be a finite
partition of X, which refines Z. We assume throughout this paper, that Y =
{"1,Ys,..., Y} withY1 < Ya <--- < Yn. Set zp := inf TX and z; :=supTX.
Now define

E:={infY,supY :Y €Y} and W:=(|JT(E\ {z0,21}))\ {z0,71}.

j=0

Set Ry :=R\WU{z",2t:2€ W},and definey <z~ <zt < z,ify<z < 2
holds in R. This means, that we have doubled all endpoints of elements of ),
and we have also doubled all inverse images of doubled points. For 2 € Ry define
n(x) := y, where y € R satisfies either z = yor y € W and z € {y~,y*}.
We have that 2,y € Ry, n{z) < #{y) implies z < y. Now we define a map
c:m W) > 7" (W) by e(z”) =2t and c(zt) :=z" forz € W.

For z,y € Ry with z < y let n(z,y) be the minimum of all & € Ny, such that
there exists a z € (Uf=0 T-IE)\{zo,21} withz < 2% and 2~ < y (n(z,y) := oo,
if such a k does not exist). Then define d(z,y) := |r(z) — n(y)| + m
(d(z,y) := |x(x) — n(y)|, if n(z,y) = o0). This gives rise to a metric d on Ry.
The topology generated by d is exactly the order topology on Ry.

Let Xy be the closure of X \ W in Ry. Observe that Xy is compact. Now
define Eo()) := {z € Ry : n(z) € E} and Ey := Ey(Y)N Xy. Then Ey =
{a1,az,...,a2n} with a1 < a2 < -+- < agn, where N := card V. For a perfect
subset A of R let A be the closure of A\ W in Ry. Now set J:= {Y : Y € )}
and Z := {2 1 Z € Z}. Then Y = {lazj-1,a25] : 7 = 1,2,...,N}, where
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la,0) :={z € Ry:a <z <b}. Themap T | X \ (W U E) can be extended to a
unique continuous piecewise monotonic map Ty : Xy — Ry. Then (Ty, 2) isa
continuous piecewise monotonic map of class R® on Xy = Uyey Y. If there is
no confusion we shall use the notation Y instead of ) and Z instead of Z. Define
E(Ty) := {z € Xy : n(z) € E(T)} and E(Ty) := {z € Xy : n(z) € E1(T)}.
The set Ry :=[;2, Ty~ Xy satisfies Ry = ﬂ;‘;OTFX_y ={zeRy:n(z) €
R(T)} N Xy. Ty is called the completion of T with respect to ).

A topological dynamical system (X, T) is a continuous map T of a compact
metric space X into itself. Hence (Ry,Ty) is a topological dynamical system.

Let (T, f, Z) be a piecewise monotonic map of class W°, and suppose, that
is a refinement of Z. Let Ty be the completion of T with respect to Y. Then
there exists a unique continuous function fy : Xy — R with fy(z) = f(z) for
allz € X\ (WUE). Then (Ty, fy, Z) is called the completion of (T, f, Z) with
respect to ).

If (X,T) is a topological dynamical system, and f : X — R is a continuous

function, then the topological pressure p(X, T, f) is defined by

n—1
(1.1) (X, T, f):= Eh_% limsupilog sup Z exp(Z f(Tiz)) ,
oo E see  j=0
where the supremum is taken over all (n,¢)-separated subsets E of X. E C X is
called (n,¢)-separated, if for every z # y € E there exists a j € {0,1,...,n — 1}
with d(T7z, T'y) > e.

If (T, f, Z) is a piecewise monotonic map of class W?, and ) is a finite partition,
which refines Z, then (Ry, Ty) is a topological dynamical system and fy : Ry —
R is a continuous function, where (Ty, fy, Z) is the completion of (T, f, Z) with
respect to Y. Then we define

(1.2) P(R(T),T, f) :== p(Ry, Ty, fy) .

Lemma 2 of [7] says, that this definition does not depend on the partition Y.

Furthermore we define for n € N

n—1
(1.3) Su(R(T), f) := sup Y fy(Ty's).

IGRy j=0

Observe that this definition does not depend on the partition Y.
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Finally we define the Hausdorff dimension. For an 4 C R, A4 # 0 define
diamA := sup |r—y|. Let Y CR. Fort >0 and € > 0 set
z,yEA

m(Y,t,¢) := inf{ Z (diam A)* : A is an at most countable cover of ¥
Aed with diam 4 < ¢ for all 4 € A} .

Then define the Hausdorff dimension HD(Y') of Y by
(1.4) HD(Y):=inf{t > 0: lin}) m(Y,t,e) =0} .

In [7] this definition is slightly modified, which allows to define the Hausdorff
dimension also on Xy — the space, where the completion Ty of a piecewise
monotonic map T of class R® acts — in a way, such that HD(Ry) = HD(R(T)).
At this point we remark, that all results of this paper hold also in the situation

considered in [7], where a bit more general situation is treated.

2. Oriented graphs associated to a piecewise monotonic map

Now we define an at most countable oriented graph (D, —), called Markov di-
agram, which describes the orbit structure of (R(T'),T) (cf. [2]). Let (T, Z) be
a piecewise monotonic map of class R, and let J be a finite partition of X,
which refines Z. Let Ty be the completion of T with respect to ) and set
K :=card Z and N := card ). Then we can write Ey = {a1,a2,...,azn} with
a; < az < --- < azy. As E(Ty) C Ey there exists an I C {1,2,...,2N} with
card I = 2K and E(Ty) = {a; : i € I}. Then every Y € ) can be written
as Y = [agj_1,a9;] fora j € {1,2,...,N}. Let Yy € Y and let D be a perfect
subinterval of Y. A nonempty C C Xy is called successor of D, if there exists
aY €Y withC = TyDNY, and we write D — C. We get that every successor
C of D is again a perfect subinterval of an element of ). Let D be the smallest
set with ) C D and such that D € D and D — C imply C € D. Then (D,—)
is called the Markov diagram of T with respect to Y. D is at most countable
and its elements are perfect subintervals of elements of ,)7

Set Dy := Y, and for r € Nset D, := D,y U{D € D:3C € D,_; with C —
D}. Then we have Dy CD; CD; C -+ and D = Jio, D-.

We shall need also another oriented graph (G, —). To this end we introduce
the following notations. Let : € {1,2,...,2N}. Define

j(i) ;= min{j € N: T)Jq; ¢ Xy},
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where we set j(i) := oo, if Ty’a; € Xy for all j € N. Now define
(2.1) aij:=Tyla; forie{1,2,...,2N}andj € Ny, 0 <j < j(0).

Set G :={a;;:i€1I,j €Ny, 0<j<j()}. Fora,be€ G weintroduce an arrow
a — b, if and only if either Tya = b or b € E1(Ty) and Tya = ¢(b). Observe
that (G, —) does not depend on the partition ). The graph considered in [5] is
similar to (G, —).

Let (H,—) be an oriented graph. Forn € Nwe call ¢g — ¢; — - = ¢,
a path of length n in H, if ¢; € H for j € {0,1,...,n} and ¢j; — ¢; for
j€{1,2,...,n}. ¢cg = ¢1 — ¢z — --- is called an infinite path in H, if ¢; € H
for all j € Ny and ¢j—y — cj for all j € N. A subset C of H is called closed,
ifeceC,deHand c— dimply d € C. H is called irreducible, if for every
c,d € H there exists a finite path ¢c¢ = ¢; — -+ — ¢, iIn H with ¢p = ¢ and
¢n = d. If H is irreducible and finite, then H is called finite irreducible. An
irreducible subset C of H is called maximal irreducible in H, if every C' # C
with C € ¢’ C H is not irreducible.

Suppose that (T, f, Z) is a piecewise monotonic map of class W°. Suppose that
Y is a finite partition of X, which refines Z. Let (Ty, fy, Z) be the completion
of (T, f, Z) with respect to Y, and let (G, —) be the graph introduced above. For
a,b € G define

(2.2) mﬂﬁ={

Set G(f) := (Gap(f))apeg. Ascard{b € G :a — b} < 2forall a € G, we
get D opeg Gap < 2¢liflle . As in [7] this implies that u — uG(f) is an £1(G)-
operator and v — G(f)v is an £>°(G)-operator. Both operators have the same
norm ||G(f)|| and the same spectral radius 7(G(f)). We have

efv(@) ifa— b,

0 otherwise.

(2.3) IG(HIF = sup D~ Gap(f)
2€0 heg
n—1
(2.4) IG(f)*|| = sup Z H e?0) foralln € N,
a€G

bop=a—by—---—b, j=0
where the sum is taken over all paths by — b — --- — b, of length n in G with

by = a, and

(25) r(G(f)) = lim IGUYII* = in IG()" I -
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Observe that the matrix G(f) does not depend on the partition ). The next
lemma gives an upper bound for r(G(f)), if there is no ¢ € E(Ty) with Ty"z €
E,(Ty)forann € N.

LEMMA 2: Let (T, f, Z) be a piecewise monotonic map of class W°.

(1) Suppose that G contains no closed paths by — b — -+ — b, with by =
bn € El(Ty) Then

log(G(f)) < lim ~Su(R(T), f) < HR(T),T,f)
(2) If Ty"z ¢ E(Ty) for all z € E|(Ty) and all n € N, then

log(G(f) < Jim ~Su(R(T), f) < pR(T), T, f)

Proof: (1) For a € G let n(a) be the smallest number n € N, such that there
exists a path by — b; — -+ — b, of length n in G with by = a and b, € E(Ty),
where we set n(a) := oo, if there exists no such n. This gives that every path
bp — by — .-+ — b, of length n < n(a) in G with by = a satisfies b; = Tyla
for j € {0,1,...,n}. Furthermore we have T)"(*)a € E,(Ty), if n(a) < co. The
definition of G gives that there exists an s € N, such that n(a) < oo implies
n(a) < s.

Let n € Ng. If by = by — -+ = bk, is a path of length n + Ks in G,
then our assumption on G gives card {j € {0,1,...,Ks}:b; € Ey(Ty)} < K -1
and n(bk,) = co. Hence for every a € G there are at most 2K-1 different paths
bop = by — -+ = byt k. of length n + Ks with by = a. If n is large enough, this

gives
n+Ks—1 n-1
>, [ @) <oX-tekellle exp(Y " fy(biexs)) =
bo=a—by—-mboypk,  J=0 j=0

2K =1 Kallflleo exp(ni: fy(Tyibk,)) <251 KoMl exp(Su(R(T), f)) -

=0
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Now we get by (2.4) and (2.5)

1

n+Ks| _
— o log |G =

logr(G(f)) = lim
n+Ks-1
lim log sup Z H e (i) <

n—oo
n+ Ks 134 bo=a—by——bpyk, =0

o (K Kslfles . _n 1 )
'tll—I»%o(n+Kslogz+ n+Ks +n+KsnS"(R(T)’f))_

lim ZS(RD). ).

Using (1.2) and (1.3) this gives the desired result, since

n—1

.1 ;
lim = sup Y fy(Ty's) < p(Ry, Ty, fy).
N0 N zeR;y =0
(2) Suppose that by — by — --- — by is a path of length n in G with by = b, €
Ei(Ty). Set k := min{l € N: b; € E1(Ty)}. As b, € E1(Ty) we get k < n. Since
b ¢ Ei(Ty) for 1 € {1,2,...,k — 1} we get Ty*by € E1(Ty), which contradicts

our assumption. Now (1) gives the desired result. 1

In the sequel we shall need also a description of the Markov diagram in a
different way (which will be called variant of the Markov diagram). This will be
similar to that used in [3].

Let (T, Z) be a piecewise monotonic map of class R® and suppose that ) is a
finite partition of X, which refines Z. Let (Ty, Z) be the completion, and (D, —)
the Markov diagram of T with respect to Y. First set

M:={(,j):i€{1,2,...,2N},5 € Np,0 < j < j(i)},

and for r € Ny define M, := {(3,j) € M : j < r}. Now we define a map
A: M — D with A(M) =D and A(M,) = D; for all r € Ny, such that a; ; is
an endpoint of A(Z,7) for all (¢,7) € M. This map will be surjective, but need
not be injective, that means a C € D can be represented by different elements
of M. Furthermore we define arrows between elements of M, such that ¢ — d
in M implies A(c) — A(d) in D, and for every ¢ € M the map A is bijective
from {d € M : ¢ — d} to {D € D: A(c) —» D}. Furthermore we shall have,
that ¢ € M, implies the existence of a d € M, with A(c) C A(d) and either
A(c) = [ag, ac] or A(c) = [ac, aq].
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For j € {1,2,...,N} set A(2j —1,0) := A(25,0) := Y;. Hence we have aig
is an endpoint of A(7,0) for all 7 € {1,2,...,2N}. Now suppose that 4 | M,
is constructed, and all arrows beginning in M,_; are described for an r € Ng.
Let : € {1,2,...,2N}, and suppose that j(i) > r + 1. Then (i,r) € M, and
A(i,r) € D,. We have that A(i,r) C A(u,v) and either A(i,r) = [aq,v,air] or
A(i,r) = [ai r, ay,y) for a (u,v) € M,. First we suppose, that there exists an s €
{0,1,...,7r—1} with A(i,r) = A(3, s). In this case we introduce an arrow (i,r) —
d if and only if either d = (¢,r + 1) or d # (i,s + 1) and (4,s) — d. Furthermore
we set A(i,r + 1) = A(4,s +1). Now we consider the case A(i,r) # A(3,s) for
all s € {0,1,...,r—1}. Set C:={C € D: A(i,r) = C,Tyair ¢ C,Tya,, ¢ C}.
For every C € C there exists an i(C) € {1,2,...,2N} with A(:(C),0) = C. We
introduce an arrow (z,7) — (i(C),0). If A(z,r) has a successor C with Tya, , € C
and Tya,; , ¢ C, then we introduce an arrow (i,7) — (u,v +1). If j(z) > r + 1,
then there exists a successor D of A(i,r) with a; r41 = Tyai, € D. We introduce
an arrow (i,7) — (¢,7 + 1) and define A(¢,r + 1) := D. We have that a; ,41 is
an endpoint of A(z,r +1). If Tyay,, € A(z,r + 1), then A(¢,r +1) C A(u,v+1)
and we have either A(3,7 + 1) = [au,041,8i,r41) or AL, 7 + 1) = [a; r41,Qu,v4+1]-
Otherwise there exists a w € {1,2,...,2N} with A(¢,r + 1) C A(w,0), such that
either A(7,r 4+ 1) = [aw,0, @i, r+1] or A(Z,7 + 1) = [@i r+1,aw,0]. This finishes the
construction of the oriented graph (M, —) and the function A.

(A, —) is called a variant of the Markov diagram of T with respect to Y,
if A C M satisfies the following properties.

(1) If: € {1,2,...,2N} and j € Ny, then (i,j) € A implies (i,]) € A for

le{0,1,...,5}.

(2) ¢,d€ Aand ¢ = d in M imply ¢ = d in A.

(3) ¢,d € A and ¢ — d in A imply either ¢ — d in M or there exists a

do € M\ A with ¢ — dy in M and A(d) = A(dy).

(4) Forc€ Athemap A:{d€ A:c—d} = {D € D: A(c) — D} is bijective.

(3) A(ANM,) =D, for all r € Ny.

Observe that (M, —) is a variant, and (D, —) can be considered as a variant
of the Markov diagram of T with respect to Y. For r € Ny set A, := AN M,.

Now suppose, that (T, Z) is a piecewise monotonic map of class R, that
f : X = R is piecewise constant, and that ) is a finite partition of X, which
refines both Z and Z(f). Let (A4, —) be a variant of the Markov diagram of T
with respect to Y. For ¢ € A let f. be the unique real number with fy(z) = f.
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for all z € A(c). For ¢,d € A define

I fe—d,

otherwise.

(9) Faf)={ ¢

Set F(f) := (Fe,d(f))e,dea, and for C C A set Fe(f) := (Fe,a(f))c,aec. It is
shown in [7], that u — uFe(f) is an €'(C)-operator and v — Fe¢(f)v is an
£°°(C)-operator, where both operators have the same norm ||F¢(f)| and the
same spectral radius r(F¢(f)). We have

@.7) IFe(Hl = sup 3" Fea(f),

ceC dec

n—1
(28)  [IFe(f)"|| = sup > [[¢/5 foreveryneN,
c€c Cg=C—+C] —-—Cp j=0
where the sum is taken over all paths ¢ — ¢; = -+ — ¢, of length n in C with

¢y = ¢, and
(29) r(Fe(f) = Bim [IFe(£)"II¥ = inf NFe(H)"I1¥

The next lemma shows, that the spectral radius of F(f) does not depend on the

variant A.

LEMMA 3: Let (T, Z) be a piecewise monotonic map of class R®, and let f :
X — R be a piecewise constant function. Suppose that Y is a finite partition of
X, which refines both Z and Z(f). Let (A,—) and (A',—) be two variants of
the Markov diagram of T with respect to Y, and set F4(f) := (F¢,a(f))c,de.a and
Fa(f) = (Fe,a(f))c,aca, where Fe 4(f) is defined as in (2.6). Then ||F4(f)*| =
|Fa(£)" | for all n € N, and r(Fa(f)) = r(Fa ().

Proof: By (2.9) it suffices to show ||Fa(f)"|| = ||Fa(f)"*| for all n € N. For
¢ € Alet f; be the unique real number with fy(z) = f. for all z € A(c), and for
d € A’ let fq be the unique real number with fy(z) = f; for all z € A(d). Let
n € N, and let ¢ € A. Then there exists a ¢’ € A’ with A(c) = A(c'). As for
every d € A the map a — A(a) from {a € A:d > a} to {C €D: A(d) - C}is
bijective, and as the same holds for A’, we get by (2.8) that

n—1

n—1
E efei = Z H efd" < ”FA’(f)n” ’

Co=C—Ci—r ey j=0 do=c'—dy—--—>d, j=0
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where the first sum is taken over all paths cg — ¢; = --- — ¢, of length n in A
with ¢p = ¢, and the second sum is taken over all paths dg =+ dy — -+ — d,, of
length n in A’ with dy = ¢'. Hence (2.8) gives | Fa(f)"}} < ||Fa(f)"]|- Changing

the rules of A and A’ in this calculation gives the desired result. |

Remark: The above proof shows a bit more. Suppose that C C A and €' C A
satisfy, that for every ¢ € C there exists a ¢’ € C' with A(c) = A(c'). Furthermore
we suppose, that if c € C, ¢’ € ' and A(c) = A(¢'), then d € C and ¢ — d in
A imply the existence of a d’ € C’' with ¢/ — d' in A’ and A(d) = A(d'). Then
IFe(£)"| < | Fe:(f)"|| for all n € N and r(Fe(f)) < r(Fe(f))-

The next lemma gives a way to estimate r(F(f)), if only a finite part of the

Markov diagram is known.

LEMMA 4: Let (T, Z) be a piecewise monotonic map of class R%, and let f : X —
R be a piecewise constant function. Suppose that ) is a finite partition of X,
which refines both Z and Z(f). Let (A, —) be a variant of the Markov diagram
of T with respect to Y, and for ¢ € A denote by f. the unique real number with
fy(z) = f. for all z € A(c). Set F(f):= Fa(f). Then

(2.10)

n—1

IFE = Fa, ()l = sup 5 forallneN,

0 co=c—c1—-—cp j=0

where the sum is taken over all paths ¢ — ¢; — -+ — ¢y, of length n in A with
¢o = ¢, and

(2.11) r(F(f)) = lim 1Fa, (F)" )7 = j}é&llFAﬂ(f)"\I% :

Proof: As (2.10) implies (2.11) by (2.9) it remains to show (2.10). To this end
we use (2.8). Fix n € N. Now fix ¢ € A. Then there exists a d € Ap with
A(c) C A(d). Let cg = ¢; — -++ — cq be a path of length n in A with ¢y = c.
We show by induction, that there exists a path dg — dy — -+ — d,, of length nin
A with dy = d and A(c;) C A(d;) for all j € {0,1,...,n}. If do,ds,...,dr- are
constructed, then A(ck—1) € A(dk—1) and there exists a Y € Y with A(cy) €Y.
Hence A(ck) = Ty A(ck—1)NY € TyA(di—1)NY. Therefore there exists a dx € A
with dx—; — di and A(dg) = Ty A(dk—1)NY. This construction gives an injective
map from the set of all paths of length n in A with ¢y = ¢ to those with dp = d.

Hence
n—-1 n—1

Z fi < Z S

co=c—C] = —Cn J=0 do=d—d—--—d,, j=0
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This gives

n—1

p ) i

| = su
CE'AO Co=C=+C|—*-—Cp j=0

N ()™ < NECH™

Observing that every path ¢g — ¢; — -+ — ¢, of length n in A with ¢o € Ay is
in A,, we get the desired result. |

Using Lemma 3 we get by the proof of Lemma 6 in [7] that

(2.12) p(R(T),T, f) = log r(Fa(f))

for every variant (A, —) of the Markov diagram of T with respect to Y. This
gives together with Lemma 4 a method to estimate p(R(T), T, f) from above.
We shall also need a result to estimate p(R(T), T, f) from below.

LEMMA 5: Let (T, Z) be a piecewise monotonic map of class R°, and let f :
X — R be a piecewise constant function. Suppose that Y is a finite partition of
X, which refines both 2 and Z(f), and suppose that

WRT)T,f) > m ~Su(R(T), f)

Then for every € > 0 there exists an r € N, such that for every variant (A, —) of
the Markov diagram of T with respect to ) there exists an irreducible C C A,
with logr(Fe(f)) > p(R(T), T, f) —e.

Proof: By Theorem 11 of [2] the nonwandering set Q(Ry,Ty) of (Ry,Ty) can
be written as Q(Ry, Ty) = Uger L(E)U Loo UPUW, where the sets L(€), Loo, P
and W have the properties described in Theorem 11 of [2]. As hiop(Leoc UP) =0

we get
n-1

WLwUP)< Jim = sup 3 fy(Tyiz) = lim 2 Su(R(T), )

u
n—oo n zERy j=0

by (1.3). Using this and the fact, that every z € W is not contained in the centre
of (Ry,Ty), we get by (1.2) and by Corollary 2.18 of [1]

p(R(T),T, f) = p(Ry, Ty, fy) = giégp(L(S), Ty, fy).
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Hence there exists an € € T with p(L(£), Ty, fy) > p(R(T), T, f) — € and

n-1

P(I(E), Ty, fy) > hm n Sup > fy(Ty'a).
Ry =0
Now the proof of Lemma 6 in [7] shows, that logr(Fe(f)) = p(L(€),T, f).
Let (A, —) be a variant of the Markov diagram of T with respect to Y. Define
Em:={ceM: Ac) € £} and €4 := {c € A : A(c) € £}. By the proof of
Lemma 3 (see the remark after Lemma 3) we get r(Fg,,(f)) = r(Fe(f)). As

n—1

(Feu(£) > Jim exp s sup 3 fr(Tya)

Ry j=0

we get by the proof of Lemma 6 in [7] that
Jim r(Fepam, () = r(Fen(f)) -

Therefore there exists an r € N with logr(Fe,,am,(f)) > p(R(T), T, f) — ¢.
Using the proof of Lemma 3 we get r(Fe,,nm, (f)) < r1(Feana,(f)), which gives
log r(Fe na,(f)) > p(R(T), T, f) — e. Since this implies r(Fg,n4,(f)) > 0, and
as Fg,na,(f) is a finite matrix, there exists an irreducible C C £4 N A, with
r(Fe(f)) = r(Feana,(f)), and hence logr(Fe(f)) > p(R(T), T, f) —e. ]

3. Continuity of the Markov diagram

In this section let (T, Z) be a piecewise monotonic map of class R?, and let Y
be a finite partition of X, which refines Z. Let Z; be the set, which consists
of all elements of Z and all maximal open subintervals of [inf TX,sup TX] \ X.
We assume throughout this section, that 2y = {21, Z,,...,Z1} with Z; < Z; <
- < Zp. Set J:={j €{1,2,...,L}: Z; € Z}. If 6§ > 0 is small enough, if
(T, £) is é—close to (T, Z) in R°, and if Y is a finite partition of X refining Z,
which i1s §—close to Y, then we get that Yy = {5}1,}72,...,?;\'} with¥; < ¥, <
< VN, Zo=121,24,.... 2L} with Zy < Zy < - < Z1, Z2={2;:j € J},
and for j € J we have {i : Y; C Z;} = {i: ¥; C Z;}. We assume these properties
throughout this section. The aim of this section is to show, that if (T, Z) is
é—close to (T, Z), and Y is 6—close to Y, then their Markov diagrams have similar
initial parts.
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Define the numbers j(i) and the elements a;; as in Section 2 for the map
T, and define analoguously the numbers j(i) and the elements &; ; for the map
T. Then we have for i1,12 € {1,2,...,2N} that ai, 0 < @i, is equivalent to
Giy 0 < @iy 0.

Denote by (Ty, Z) the completion of (T, Z) with respect to Y, and let (D, —)
be the Markov diagram of T with respect to J. C,D € D are called Y-close, if
there exists a Z € Z with CUD C Z and if there exists a j € {1,2,...,N} with
C CYj and D CYj_; UY; UYj;1, where we set Yy := Y4, := 0. Observe that

Y-closeness does not depend only on Y, but also on Z.

LEMMA 6: Let (T, Z) be a piecewise monotonic map of class R°. Suppose that
Y is a finite partition of X, which refines Z. Then for every r € N there exists
a § > 0, such that for every piecewise monotonic map (T, é), which is é—close
to (T, Z) with respect to the R"-topology and for every finite partition Yof X
refining Z, which is 6—close to ), there exists a variant (A,—) of the Markov
diagram of T with respect to ) and a variant (A, —) of the Markov diagram of
T with respect to Y with the following properties.

(1) A, can be written as a disjoint union Bg U By U By, such that By U B, and
B, are closed in A, and Ay C By (B:1 and By may be possibly empty).

(2) Everyc€ A, has at most two successors in By U B,.

(3) There exists a bijective function ¢ : A, — By, and there exists a function
Y:B; -G

(4) For c,d € A, the property ¢ — d in A is equivalent to o(c) — ¢(d) in A.
For ¢,d € By the property ¢ — d in A implies 1(c) — P(d)ing.

(5) A(c) = Y; forac € Ay and a j € {1,2,...,N} implies p(c) € Ao and
Ap(e) = ¥;. ~ ~

(6) c € A, and A(c) C A(d) for a d € Ay imply A(p(c)) C A(p(d)). ¢ € B,
and 3(c) € A(d) for a d € Ay imply A(c) is Yclose to A(p(d)).

(7) Let P be the set of all paths ¢g — ¢; — -+ — ¢, of length r in fir with
co € jo, and set N := {(dp,d1,...,d,):d; € A, UG forj € {0,1,...,r}}.
Then there exists a function x : P — N.

(8) Let co = ¢y = - = ¢, € P, x(co = ¢1 = -+ = ¢,) = (do,d1,...,dr)
and j € {0,1,...,r}. ¢; € By is equivalent to d; € G, and we have then
¥(c;) = d;. ¢; € Bo implies p(d;) = ¢;. ¢; € Bo U By implies A(c;) is
Y-close to A(p(d;)). Furthermore ¢; € BoUBy and j > 1 imply d;—, — d;
in A.
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(9) For a fixed ¢ € Ay and for a fixed (do,d,,...,d;) € N there are at most
2r+1 different pathscy — ¢; — -+ — ¢, € P with ¢ = c and x(cop — ¢ —
.-+ = ¢,) = (do,dy,...,d;). Furthermore for s € {0,1,...,r — 1} and fixed
do,di,...,ds € A, UG there are at most 4 different b € G, such that there
exist dgya,dsys3, ..., dr € A, UG with (do,d,...,ds,b,deye,...,d,) € x(P).

Proof: To prove this lemma it suffices to consider the completions of T and 7.
We use the notations X, T, ), ..., resp. X,T,Y,... for these completions.

We show by induction that the following extended version of the lemma holds.
For every r € Ny and for every n > 0 there exists a § > 0, such that for every
piecewise monotonic map (T, Z ), which is é-close to (T, Z) with respect to the
R’-topology, and for every finite partition Y of X refining Z, which is 8-close
to ), there exists a variant (A, —) of the Markov diagram of T' with respect to
Y and a variant (A, —) of the Markov diagram of T with respect to ) with the
following properties.

(a) (4,7) € Ar41 implies (i,5) € A;41. Furthermore (3,0) € Ay for every

i €{1,2,...,2N}.

(b) ¢(3,7) = (3,7), whenever (i,7) € A,.

(c) I (i,5) € A, and (u,v) € Ar41, then (4,5) — (u,v) in A is equivalent to
(,5) = (u,v) in A

(d) I (3,5) € Ary1, then there exists an s € J and at € {1,2,...,N} with
aij €Z,NY,and 4;; € Z, nY..

(e) If (4,7) € Art1, then there exists a (u,v) € A,41 with A(3,5) C A(y,v)
and A(i,7) C A(u,v), such that either A(i,j) = [au,.,ai;] and A(i,j) =
[Gu,, @i ;] or AG,5) = [ai j,au,) and A(4, §) = [ j, du,v)-

€3] A, can be written as a disjoint union By U B, U Bz, such that B; U Bz and
B, are closed in /ir, and By = ¢(A,). Furthermore we have Ag C By, and
every (1,7) € A, has at most two successors in B, U Bs.

(g) |m(ai;) — #(@ ;)| < n, whenever (i,5) € By U By.

(h) If (i,5) € Ar, (3,5 +1) € Art1 \ Aryg1, then [#(z) — 7(Tai ;)| < n for all
z € Ai,j+1).

() If (i,7) € By, then we have |7(z) — m(ai ;)| < 7y for all z € A(, ), and
|#(z) — 7(Tai ;)| < nforall ¢ € C, if A(4,j) — C in D.

(G) ¥ (i,7) € Bz, then there exists a p € {1,2,...,2N} with a,0 € E(T)
and a k € {0,1,...,5 — 1} with k < j(p), such that ap; ¢ E(T) for I €
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(k)

(1)
(m)

(n)

(0)

{1,2,...,k}, |#(@i,;) —m(apx)| < m, |#(@p,k) — 7(ap,k)| < 1, and there exists
an s € J with a,x € Z, and &; ; € Z,. We have then, that 9(i,7) = ap s
If (i,7) € Bz, then there exists a (u,0) € Ay with e, € A(u,0). We have
then, that A(s,j) is Y-close to A(u,0). Furthermore we have
|#(z) — m(app)| < 7y for all z € A(3,5), and |#(z) - n(Tap )| < 7 for
allz € C,if A(i,j) —» C in D.

(i,4), (u,v) € By and (i,5) > (u,v) in A imply %(i, ) = 9(u,v) in G.
Suppose that s € N, s < r, and that (¢,0) € Ag and (5,7) € BoUBy. If g =
(¢,0) = ¢; — -+ —= ¢, = (4,]) is a path of length s in A, then there exists
a path dy = (¢,0) — di — --- — d, in Ay, where A(d,) = [ai, jy, @iy, js]
with (41, 1), (¢2,j2) € A, such that either n(a;, ;,) = m{a; ;) or n(ai,,;,) =
7(ai ;). Then we set xs(co = ¢1 — -+ = ¢} = (dg,ds,...,ds). We
have that A(%,5) is Y-close to A(d,), and (i,5) € By implies d, = (3,7).
Furthermore we have either d, = (4,7) or |#(z) — n(ai, j,)] < 5 for all
¢ € A(i,j) or |#(z) — m(ai,,j,)| < 7 for all z € A3, §).

Suppose that s € N, s < r, and that (¢,0) € A, and (2,7) € Ba. If ¢g =
(¢,0) = ¢y — -++ — ¢, = (,7) is a path of length s in A, then there exists
ate€{0,1,...,s— 1} with t = max{l € {0,1,...,s} : ¢; € By UB;}. Then
we set xs{cg = ¢; = -+ — ¢5) 1= (do, d1,...,d,), where (dg,d1,...,d¢) :=
Xt(co = ¢c1 = - —c)and dy:=¢(¢;) for l € {t+1,t +2,...,s}.
Suppose that s € N, s < r, and that (¢,0) € A and (i,5) € A,. If
co = (¢,0) = ¢; = -+ = ¢, = (4,§) is a path of length s in A, if (p, k)
satisfies k < j and |7(z) — m(ap k)| < 7 for all z € A(s,5), and if t € J
satisfies ap, x € Z; and fi(i,j) C Z,, then there exist (u1,v1), (uz,v2) €
A, with the following properties. € [Gu,,v;,@us,v,) implies z € Z; and
[#(x) — m(apx)| < n. There are at most s different paths dy = (¢,0) —
dy — -+ — d, of length s in A, with xs(do = di — -« = dy) = xs(co —
¢1 — - = ¢,) and |#(z) = 7(ap k)| < 7 for all z € A(d,), and each of these
paths satisfies A(dy) C [Gu, v, @us,vp], and if do = dy — -+ > d, # co —
€1 — -+ — ¢, then A(d,) N A(c,) = 0.

As (f) implies (1) and (2), (a), (b), (f) and (j) imply (3}, (c) and (1) imply (4),
(a), (b) and (d) imply (5), (2), (b), (d), (j) and (k) imply (6), (m) and (n) imply
(7) and (8) (set x := xr), and (h), (i), (k), (1), (m), (n) and (o) imply (9) (n can be
chosen so small, that j,v < r and |7(a; ;)—7(au,)| < 27 imply 7(a; ;) = 7(au,v)),
it remains to show (a)-(0). First we define Ao := {(7,0) : 7 € {1,2,...,2N}} and
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Ao := Ao. We have that aip € A(2,0) and @; € fi(i,O).

Now suppose that r € Ng. If r = 0 then the induction hypothesis is partially
trivial, and partially shown in the following proof. If otherwise r > 0, then
we assume that the extended lemma is shown for »r — 1. Let > 0. Define
ay = min{|n(ai, j,) — 7(ai ;) : 1,32 € {1,2,...,2N}, 51,52 € {0,1,...,r +
1}, 71 < j(81),d2 < 3(32), |7 (ai,,j,) — 7(ai,,5,)] # 0} and a2 := min{|m(Ta;, ;) —
w(aiz0)| t 41,02 € {1,2,...,2N},7 € {0,1,...,r},5 < j(i),|m(Tai, ;) —7n(ai,0)| #
0}. Hence a; > 0 and a2 > 0. By the piecewise monotonicity of T there exists
an a3 > 0, such that z,y € Z, for an s € J and |n(z) — 7(y)| < a3 imply
|n7(Tz) — x(Ty)| < $ min{n,a1,a2}. Set no := } min{n, a1, az,a3}. Then there
exists a § > 0 with § < g, such that the extended lemma holds for r replaced
by r — 1 and 7 replaced by no (in the case r = 0 set § = 7). Now let (T, Z) be
6—close to (T, Z) with respect to the R%~topology and let Y be a finite partition
of X refining Z, which is 6—close to Y.

We show at first

seJ,z€Z,,y€ Z,, then |n(z) — #(y)| <po =

3.1 .
(1) |7(Tz) — 7(Ty)| <%min{n,a1,a2} .

As (T, Z) is 6—close to (T, Z), there exists an a € Z, with |r(z)—7(a)| < 70 < a3,
such that |7(Ta) — #(Ty)| < § < } min{y, a1, a2}. Hence

|n(Tz) - #(Ty)| < In(Tz) - 7(Ta)| + |n(Ta) — #(Ty)| <

1 1 .
Zmin{n,al,az} +6< Emln{n,al,ag},

which shows (3.1).
Next we show for i,41,12 € {1,2,...,2N} and j € Ny, 0 < j < min{j(z),r +2}

n(ai,0) < 7(ai,j) < 7(ai0), 7 € X,

(3.2)

3 . . . .
() = w(ai;)l < gmin{n, a1, 00} = #(ai, 0) < #(z) < #(@i,0)
and for 1,7y,42 € {1,2,...,2N} and j € No, 0 < j < min{j(z),r + 1}

n(ai, 0) < 7(Taij) < m(aiy0), z € X,

(3.3)

[7(2) = 7(Tai )| < 3 min{n, ar, a2} = #(a, 0) < #(z) < #{an0) -
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By the definition of a; we get m(ai, 0) + o1 < w(ai;) < 7(@i0) — ay. As Y is
é—close to Y and & < no < %t this gives
301

#(@n,0) < w(ai0) + 7 < w(ai) = 7 <F(@) <

3a o e
m(ai) + = < w(ai0) — 5 < #(@i0),

which shows (3.2). An analoguous calculation shows (3.3). From (3.2) and (3.3)
it follows easily, that for i € {1,2,...,2N} and j € Ny, 0 < j < min{j(¢),r + 2}

(3.4) }
aij¢ Eg,aij€Y, forate{1,2,...,N},ze X,

7(2) — m(as)l < S min{n,ar,00) = 2 ¢ Bo,z € ¥,

and for i € {1,2,...,2N} and j € Ny, 0 < j < min{j(i),r + 1}
(3.5) i
Taij ¢ Eo, Ta;; € Z,forans € {1,2,...,L},z € X,

3 . ~
|#(z) — m(Tai ;)| < Zmin{n,al,ag} = cé¢Ey,z€2,.

Suppose that (i,r) € A,. Throughout this proof we assume, that there exists
a (u,v) € A, with A(i,r) C A(u,v) and A(3,r) = [@y,v, & ], and that T | A(i,r)
is strictly increasing (analoguous considerations show the desired properties, if
A(3,7) = [@ir,@u o), or if T | A(4,7) is strictly decreasing).

At first we suppose that (i,r) € A,. Then set o(i,r) := (i,r). We have
|m(ai,r) — #(@i,r)] < Mo < n and there exist s; € J, t; € {1,2,...,N} with
@iy € Zoy, NYy, and &, € Z,, N Y;,. Furthermore there exists a (u,v) € A,
with A(4,7) = [@u v, @ir] C A(w,v) and A(3,7) = [Gu,v,dir] C A(u,v). T | Z, is
strictly increasing. As |7(ay,v)—7(du,v)| < 70 < 7 we get by (3.1) that |7(Ta; ;) —
#Ta;,)| < 3 min{n, a1,a2} < 7 and Iw(Tau,v)—fr(ff‘&u,.,)l < %min{n,al,ag} <
n. Set C:={C € D: A(i,r) > C,Ta;, ¢ C},,C; :={C€C:Tay, ¢ C}. I
C1 # 0, then there exist 71,72 € {1,2,...,N} with C; = {¥j : j1 <j < j»} and
Tau,» < infV;, < supYj, < Ta;,. Now (3.3) gives Td,,, < inf¥; <sup¥;, <
T&,-,r, which shows fi(i,r) - f/] for j; < j < jo. For every C € C; there exists
an 1(C) € {1,2,...,2N} with C = A(:(C),0) and the arrow (z,r) — (i(C),0) is
allowed in A and A. Furthermore we have C = Yiforaj€ {ji,751+1,...,j2} and
Y; = A(3(C),0). Hence we make the arrows (i,7) — (i(C),0) in A and A. The
construction below shows, that if C\C; # 0, then there exists a (i, ) € A4 with



118 P. RAITH Isr. J. Math.

(4,7) = (&,%) in A and A, A(#,%) C Yj,—1 and A(il,5) C ¥j,—1. Besides these
arrows there exists at most one (ug,vp) € Arpq \ Ar41 with (¢,7) — (ug,vo)
in A and Téa,, € A{ug,vo) (in this case (&,5) € Ay, A(&,9) = Yj,-1 and
A(@,%) = ¥;j,_1). This shows (c) for the arrows (i,7) — d with Ta; , ¢ A(d).

Now we describe all other arrows in A and A beginning in (i,r). Suppose,
that Ta;, € X. Then there exists an [ € {1,2,...,2N} with a;,41 = Ta;, €
A(1,0) and a; 41 < aro. Hence either a;,41 = a1 or ajp ¢ TA{i, 7). Set
D := TA(i,r) N A(1,0), which is a successor of A(7,r), and set D:= Té(i,r) N
fi(l, 0). Using Tay,» < a1,0 (3.3) gives ’f"&,,,,, < dy,0, which implies that Disa
successor of A(3,r). If Tay,,, € D, then @y,y41 = Tau,, € A(1,0), and (3.3) gives
ay,v+1 = Tay,» € A(l,0). In this case set u; := u and vy := v + 1, which implies
vy <r + 1. If otherwise T&u,,, ¢ D, then there exists a u; € {1,2,...,2N} with
uy # 1 and @, 0 € D. (3.3) gives a,, 0 € D. Set v; := 0 in this case, which
gives v; < r + 1. In both cases we have D = [ay, 4,,@ir+1] C A(u1,v1) and
D = [@y, v,,50p D] C A(u1,v1) with @y, 4, < sup D = min{a o, Td;r}.

Suppose at first, that Ta; . ¢ X. Then there exists an s; € {1,2,...,L}\ J
with T&;,r € Z,,. By (3.5) we have Ta; , € Z,, or @i r41 = Ta;r € E. In the first
case we have j(i) = j(i) = r + 1 and the arrows described above are all arrows in
A and A beginning in (,7). We have (i,7+1) ¢ Ar41UA,4+1. In the second case
the above shows, that we can choose the variants A and A such that (u1,v1) €
A1 N -r‘ir+1, D C A(uj,v;) and D= fi(ul,vl). a;ir+1 € E gives a; ,41 = aip,
which implies D = A(u;,v;). We choose A such, that (i,r + 1) ¢ A,41 and
(i,7) = (u1,v1) is an arrow in A. As j(i) =r + 1 we have (5,7 + 1) ¢ A,4,. We
make the arrow (i,r) — (u1,1) in A, which shows (c) in this case.

It remains to consider the case T&,-,r € X. In this case @irg1 = T&;,r and
there exist sz € J, t; € {1,2,..., N} with & ;41 € Z,, N ¥;,. By (3.4) and (3.5)
we have a;,41 = Ta;, € Z,, NY,, or Ta;, € Ey. First we consider the case
@i r41 € Zy, NYi,. We have A(i,r + 1) = D. In this case we choose the variants
such, that (3,7 + 1) € A,41 N Ay and (i,7) = (i,r + 1) is an arrow in A and
in A. This shows (a), (c), (d), (e) and (g) in this case.

Now we consider the case Ta;, € E;. At first we consider the case a; 41 =
Ta;, € X. We have then air+1 = a0, D = A(uq,v1), D = fi(ul,vl) and
A(4,741) = [@p,0,8i,r41], where a; 0 = c(ar). We choose A such, that (i,r+1) ¢
Ary1 and (¢,7) = (uy,v1) is an arrow in A. Furthermore we choose A such, that

G,r +1) € Ar4; and (5,7) — (u1,v1) and (i,7) — (i,r + 1) are arrows in A.
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This shows (c) and (h) in this case. If otherwise T'a;, ¢ X, then j(i) =r +1,
(¢, +1) ¢ A, and the arrows described above are all arrows in A beginning in
(i,r). We have in this case A(s,r + 1) = [dp0,dir+1), where a0 = ¢(Ta;,).
Then we choose A such, that (i,7 +1) € Ar4; and (i,7) — (5,7 + 1) is an arrow
in A. Hence (h) is satisfied in this case.

Therefore we have shown (a)-(e) and (h). Furthermore the proof gives, that
every (1,7} € A, C A, has at most two successors in A, which are not in Ay = A,.
Hence every (i,7) € By := ¢(A;) = A, has at most two successors in B; U B.

Now we suppose that (i,7) € A, \ A,. Let s € J be such, that A(i,r) C Z,.
If there exists a p € {1,2,...,2N} and a k € {0,1,...,r — 1} with a9 € E(T)
and |#(@; ) — m(ap,k)| < 1o, then we say (i,7) € B, otherwise we say (i,r) € By.

Suppose that (i,r) € B,. By (3.4) and (3.5) we can assume, that ap; ¢ E(T)
for 1 € {1,2,...,k}, apx € Zs, dpx € Z, and |7(dpx) — 7(ap)| < m0. Set
¥(i,7) := ap k. By the definition of o) and a3, and as g < imin{al,az}, we
get |#(z) — w(a, )] < no < 7 for all z € A(3,r), which shows (j). Furthermore
(3.1) gives |#(Tz) — n(Tap)| < 3 min{n,a1, a2} < n for all z € A(i,r). By
(3.3) this property shows, that every (i,j) € By has at most two successors in
A, and that (3,7) € Ba, (u,v) € A, and (2,7) = (u,v) imply (u,v) € Bz and
¥(i,7) — ¥(u,v). Hence (1) is shown. Let (u,0) € Ao satisfy apx € A(u,0).
Then A(u,0) C Z,, which implies A(u,0) C Z,. Furthermore if ¢t € {1,2,...,N}
satisfies A(u,0) = Y, then (3.2) gives #(inf ¥;—1) < #(z) < #(sup Yi41) for all
z € A(3,r) (we set inf ¥y := —oco and sup Y41 := o). Hence A(i,r) is Y-close
to A(u,0), and this shows (k).

Now suppose that (¢,7) € B;. Then we have either (i,r — 1) € A,_; or
(i,r — 1) € By. Hence we have |#(z) — 7(Ta; r—1)| < 1o < 5 for all z € A(s,r).
Hence (3.3) gives a;, = Ta;,—; € X. This gives (g), and (3.1) gives |#(Tz) —
m(Ta;,)| < 3min{n, ar,az} <nforallz € A(3,r), which shows (i). Using (3.3),
the definition of a; and a; and the fact 7, < %min{al,ag} this shows, that
every (i,j) € By has at most two successors in A, and (¢,5) € By, (u,v) € A,
and (¢,7) — (u,v) imply (u,v) € By U B;. Now we have shown (a)—(1).

As every path cg = ¢1 — -+ — ¢, of length s < r in A with c € ./io is in
A,_1, it remains to show (m)—(o) for s = r. Suppose that (¢,0) € Ao, (,5) € A,
and that ¢y = (¢,0) = ¢; — «++ — ¢, = (4, §) is a path of length r in A,. Then
co = (g,0) = ¢; = -+ — ¢, is a path of length r — 1 in A,_;. Suppose that

¢r—1 = (10, Jo).
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Suppose at first (¢,7) € BoUB;. We have then (79, jo) € BoUB; and there exists
a path dg = (¢,0) = di = -+ — d,—1 in Ar-1, where A(dr—1) = [ak, 1, @k, 1,]
with (ky,11),(k2,l2) € Ar—1, such that either 7(ax, 1,) = 7(ai,,jo) or 7(ak,,1,) =
n(ai,,5,). Furthermore (%o,j0) € By implies dy_; = (40, J0), and (ip,0) € By
implies |#(z) — m(ai,,j0 )} < 70 for all 2 € A(%0,70). I (i,7) € Bo, then we have
(40,40) € By and (d0,40) = (i,5) in A. Hence (c) implies (ig,jo) — (i,) in A,
which shows (m) in this case. If otherwise (z,5) € By, then (h) and (i) give,
that we can assume |7(z) — 7(Tax, 1,)| < no for all ¢ € A(i,j). As (4,5) € By
(3.3) gives ak, 1,41 = Tar, 1, € X, and A(3, ) is Y-close to A(b), where b € Ao
satisfies ax, 1,41 € A(b). Hence there exists a d, € A, with d,_; — d, and
aky 141 € A(dy). Therefore A, ;) is Y-close to A(d,). Now (1), the definition
of a; and the fact no < 9t give (ax,,1,41) = 7(a;,;). This shows (m).

Now suppose that (p,k) satisfies k& < j and |#(z) — w(ap k)] < no for all
z € A(3,7), and there exists a t € J with a,x € Z; and A(4,5) C Z,. Then there
exists a (po, ko) with ko < jo and 7(Tap, k,) = 7(ap i), and there exists a tp € J
with ap, ks € Z, and A(ie,jo) € Zi,, such that either |7#(z) — T(@pg,ko )| < 70
or (ig,j0) € Bo and apk, € {inf A(ig,jo),sup Alio,jo)}. Set @ = {dy =
(,0) = dy — .-+ — d,— is a path of length r — 1 in A, with Xxr—1(do —
dy = - = dro1) = xr-1(co = €1 = - = ero1) 1 |F(2) — T(@po,ko)| <
no for all & € A(dr-1), or dr—y € By and ap,x, € {inf A(dr_1),sup A(d,_1)}}
and @y := {do = (¢,0) = dy = -+ = drey € Q : |7(z) — 7(apy,k)| <
no for all z € A(d,—1)}. There exist (u1,v1),(¢2,v2), which satisfy (o) for s =
r—1and (p, k) replaced by (po, ko) (observe that the property [du, v, , Gus,va] € Zt,
remains true in the case (ig,jo) € By). We have that the elements of {A(d,—1):
do =(q,0) = dy = --- = d,_; € Q} are pairwise disjoint. Hence the elements of
{TA(d,—1) : do = (¢,0) = dy — --- — d,_; € Q} are also pairwise disjoint. By
(3.3) we get, that at most one element of {d,—y : dg = dy = -+ - d,—; € Qo}
has more than one successor in A. If @\ Qo # 9, then it contains a unique element
dy = di »— d,_1, and if d, € A, satisfies d,—; — d, and [7(z) — w(ap,x)] < Mo
for all z € A(d,), then d, is uniquely determined by these properties, and every
element of {J,_, cdg = dy = - = dpq € Qo} has at most one successor in
A. As every dy = (¢,0) = dy = - = dr with x,(dy = dy - -+ > d,) =
Xr(co = €1 = -+ = ¢) and |7(z) — w(ap )| < no for all z € A(d,) satisfies
A(dy) C Tl@uy,00s8uz,vp) N Z¢ or drmy € By, (3.1) gives (o). This finishes the
proof of this lemma. |
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4. Continuity of the pressure

In this section we shall use the results of Section 3 to prove continuity results

about the pressure. We consider a weighted piecewise monotonic map (7, f, Z)
of class W°.

THEOREM 1: Let (T, f, Z) be a piecewise monotonic map of class W°, and sup-
pose that

WRT),T, ) > fim ~Su(R(T), ).

Then for every € > 0 there exists a § > 0, such that (T, f,Z) is é—close to
(T, f, Z) with respect to the W°-topology implies

p(R(T),T, f) —€< p(R(T)7T) f) .
Proof: Let ¢ > 0. We can assume, that ¢ is small enough to ensure
!
(4.2) P(R(T),T,f) > = + lim ~Su(R(T), f) .

By the piecewise continuity of f there exists a finite partition
Y={M"nYs,...,Ya} withY; <¥; <--- <Yy of X refining Z, such that

(42) sup sup |f(x) - fly)l < 3 -
YeY z,y€Y

IfxeYforaY €)), then define
fi(z) = sup f(y).
yeY

Then f; is (more exactly: can be extended to) a piecewise constant function f :
X — R. By the definition of fi we get by (1.2) p(R(T), T\ f) < p(R(T), T, f1).
Let (Ty, fl,j)) be the completion of (T, f1,)) with respect to ) (for simplicity
we shall use the notation (Ty, f1,)) for this completion). Now (4.1) gives

WR(T),T, /1) > lim ~S.(R(T), fy).

Hence Lemma 5 gives the existence of an r € N, such that for every variant
(A, —) of the Markov diagram of T with respect to ) there exists an irreducible
C C A, with

(43)  logr(Fe(f1)) > p(R(T),T, fi) - 5 2 p(R(T), T, ) - 5 -
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Fix this r for the rest of this proof. By Lemma 6 there exists a § € (0, §), such
that the conclusions of Lemma 6 are true with respect to this r, if (T, Z) is a
piecewise monotonic map, which is é—close to (T, Z) in the R°~topology.

Suppose that (f‘, f,Z) is a piecewise monotonic map of class W°, which is
6~close to (T, f, Z) in the W -topology. By Lemma 1 and (4.2) there exists a
finite partition y= {171,17'2,...,}71\;} with ¥} < Y3 < -+ < Yy of X refining 2,
such that 5) is é—close to ), and

inf fa) 2 fily) - =

k]
z€Y; 3

where y € Yj, forall j € {1,2,...,N}. Let (A4,—) and (A, —) be the variants of
the Markov diagram of T, resp. T, with respect to Y, resp. Y, occurring in the

conclusion of Lemma 6. fz € Y fora ¥ € 5?, then we define
f2(z) = inf f(y).
ye€Y

Then f; : X — R is a piecewise constant function, which satisfies p(R(T), T, f2)
< p(R(T), T, f) and fo(y) > fi(z) = L, ifz €Y,y e Vjforaje {1,2,...,N}.
Denote by (f’)-,, f2,57) the completion of (T, f2,Y) with respect to y.

By (4.3) there exists an irreducible C C A, with

logr(Fe(f1)) > p(R(T), T, f) - 5.

Now consider the matrix FW(C)( f2), where p : A, — A, is the function described
in Lemma 6. For ¢,d € C we get by (4), (5) and (6) of Lemma 6, that

Fooe(f2) > € S Foulfr).
Using (3) of Lemma 6 and (2.8) and (2.9) this gives
r(F(£2) 2 1(Fice)(£2)) 2 € Fr(Fe(fr))-
Now (2.12) and (4.3) give

p(R(T)’T, f) 2 p(R(T)yf" f2) = log r(ﬁ(f2)) Z
logr(Fe(f1)) - = > (R(T), T, /) —c. B
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This theorem shows, that the topological pressure is lower semi—continuous, if
WR(T),T,f) > lim ~Su(R(T), ).
It generalizes Theorem 9 of [8], where the lower semi—continuity of
T p([0,1,T,f)

with respect to the C%-topology is shown for continuous piecewise monotonic
maps T : [0,1] — [0,1] and a fixed function f : [0,1] — R with p([0,1],T, f) >
sup f. Furthermore the lower semi~continuity of the topological entropy with
respect to the R-topology follows from Theorem 1, if hiop(R(T),T) > 0. If
otherwise hyop(R(T),T) = 0, then the lower semi-continuity is trivial. Hence
Theorem 1 implies the well known result (Theorem 5 of [6]) on the lower semi~
continuity of the topological entropy. Our proof is similar to the proofs in [6] and
[8], where an approximation by “horseshoes” is used instead of our approximation
by finite subsets of the Markov diagram. Now we shall give an example, where

the pressure is not lower semi-continuous.
Define Z := {(0, 1),(},1),(%,2),(%,1)}, define

2z for z € [0, 3],
2_92z forzell,l],
(44) Tz:=4 > [‘j ;]
2z - % forzel;,2]

2-2z forze€ (1],

and define

0 for z € [0, 1],
30z —10 forz €[},2],
30-30z for x € [2,1].

(4.5) OF

Then (T,2) is in E* and (T, f,Z) is in W™, We get R(T) = [0,1] and
p([0,1],T,f) = 10. Observe that the nonwandering set of T is [0,3] U {2}.
The function f is so large at the isolated fixed point %, such that it dominates
the pressure on the rest of the nonwandering set. As we shall see below this fixed

point can be destroyed by an arbitrarily small perturbation. The condition

R T, f) > lim ~Su(R(T),f)
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excludes such a phenomenon. For ¢ € (0,1) we define

2z for z € [0, 1],

2_2 for z € [}, 1],

(2—e)x—%+§ forme[%,g],
2-e-(2-¢)x forz el

(4.6) Tex :=

Then (T, Z) is e—close to (T, Z) in R, and (T, f, Z) is e—close to (T, f, Z) in
W, Furthermore we have R(T.) = {0,1], the nonwandering set of T, is [0, 1],
and p([0,1], T¢, f) = log 2, which shows, that the topological pressure is not lower
semi—continuous in this case.

Now we show a result on upper semi—continuity properties of the pressure.

THEOREM 2: Let (T, f, Z) be a piecewise monotonic map of class W°. Then for
every € > 0 there exists a § > 0, such that (T, f, Z) is é—close to (T, f, Z) with
respect to the W®-topology implies

p(R(T), T, f) < max{p(R(T), T, f), log r(G())} +¢ .
Proof: Let ¢ > 0. By the piecewise continuity of f there exists a finite partition

Y of X, which refines 2, such that

€
sup sup |f(z) = f(y)l < 7.
Y€Y z,y€Y

Again we suppose, that Y = {¥1,Ys,...,Ya} with Y1 <Y <--- <Yn. Ifz €Y
for aY € ), then define

fi(@) = inf f0).

Then f; : X — R is a piecewise constant function, and we have for j €
{,2,...,N -1}

€
(4.7) lfi(z) = fi(y)l < 2 forz e Y,y €Y,
if there exists a Z € Z with Y; UYj41 € Z. We have
p(R(T), T’ fl) S p(R(T)v T7 f)

and r(G(f1)) < r(G(f)). Denote by (Ty, f1,)) the completion of (T, f;,Y) with
respect to Y. If (A, —) is a variant of the Markov diagram of T with respect to
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Y, and if d € A, then let f; be the unique real number with f1(z) = f; for all
z € A(d).
Define

(4.8) Ry := exp(max{p(R(T),T, f1),log 7(G(f1))} +¢) -
By (2.12) we get
(4.9) r(Fa(f1)) = P (RMTH)

for every variant (A, —) of the Markov diagram of T with respect to ). As
Ry > €% max{e?(RTT.11) r(G(f;))} we can choose an

Re (e%" max{e?*TT1) +(G(f,))}, Ro).

As e"% R > r(Fa(f1)) and e~ ¥R > r(G(f1)) we get by (2.5) and (2.9), that
there exists a C' € R, such that

(4.10) sup e R™* | Fa(£1)"ll < €

for every variant (A, —) of the Markov diagram of T with respect to ), and
(411) sup e ¥* R |IG(f1)' < C

We can assume that

C > max{2, 8e¥ R sup ef‘(’)}.
ZEXy

Fix an » € N with

(4.12) Jr+12C3R<R, .

By Lemma 6 there exists a é € (0, £), such that the conclusions of Lemma 6 are
true for every (T, £), which is é—close to (T, Z ) in the R%-topology.

Let (f’, f, Z~) be a piecewise monotonic map of class W°, which is é—close to
(T, f, Z) in the W°-topology. By the choice of ) Lemma 1 gives the existence
of a finite partition Y= {ﬁ,f’g,...,f’N} with ¥; < V;<--<Vyof X refining
Z, such that Y is 6—close to ), and

sup f(z) < fi(y) + 3,
z€Y;
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where y € Yj, for all j € {1,2,...,N}. Ifz € Y fora ¥ € ), then define

fa(z) = sup f(y).
yeY

Then f; : X — R is a piecewise constant function. We have p(R(T), T, f) <
p(R(T),T, f2), and fo(y) < fi(z) + 3 holds for z € Yj, y € f’] for a j €
{1,2,...,N}. Denote by (Tj,,fg,j)) the completion of (’f‘, fz,j;) with respect
to V. Let (A,—) and (A, —) be the variants of the Markov diagram of T, resp.
T, with respect to ), resp. ), occurring in the conclusion of Lemma 6. For
d € Alet f; be the unique real number with f(z) = f; for all z € A(d). Set
F(f1) := (F.a(f1))c,dea and F(~ f2) = (Fe(f2))c gea- By (4.7) and by (5) and
(6) of Lemma 6 we get for c € A, and d € A,

(4.13) fe<fit ;%E , if A(c) is Y-close to A(p(d)).

By (2.9) we have r(F(f2)) < | F(f2 )7|I*. Lemma 4 (formula (2.10)) gives

r(F(f2))" S IF(f) Il = | F4,(f2)ll =

4.14 1.
o w Y T
Cejo co=c—cy—-—e, j=0
where the sum is taken over all paths ¢g — ¢; — -+ — ¢, of length r in A,

with ¢ = ¢. Fix ¢ € Ag. Then by (1) and (3) of Lemma 6 there exists a unique
d e Ay with ¢(d) = c.

Let P, be the set of all paths ¢g — ¢; — -+ — ¢, of length r in A, with g = ¢,
and for s € {0,1,...,r} let P.(s) be the set of all ¢g — ¢; —= --+ = ¢, € P, with
s =max{j € {0,1,...,7} : ¢; € By UB;}. Hence P = J;_( Pc(s). Define for
se{0,1,...,7}

r—=1
(4.15) H.(s):= Z elei
co—cy—r-—r EP(s) J=0
Then we have

r—1 r

(4.16) H = Z H fei = Z H.(s).

cg—cy——c  €EP, j=0 3=0
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Let s € {0,1,...,r}. If cg = ¢1 = +++ — ¢, € Pc(s) and if (do, ds,...,d,) =
x{co = ¢1 = - = ¢;), then (1) and (8) of Lemma 6 give d; € A, for all j < s,
do = d, and d; € G for all j > s. Furthermore we get by (8) of Lemma 6,
that fi(c;) is Y-close to A(¢(d;)) for all j € {0,1,...,s}, and if s > 1, then
dy — dy — +-- — d, is a path of length s in A, with dy = d. Hence (4.13) gives
efes <e¥efts andif s> 1, then

s—1 s—1

3
I I elei < es? I I eJ4
J=0 j=0

If s <r -2, then we get by (4), (6) and (8) of Lemma 6, that de41 — dsq2 —
-+ — d, is a path of length r —s — 1 in G, and A(c;) is Y—close to A(p(d;)) for
allj € {s+1,5+2,...,r}, where JJ- € Ay satisfies d; € A(Jj). Therefore (4.13)

gives

r—1 B r—1
H el < ¥l H N, fs<r—2,
7=s5+1 j=s+l

Hence using (4.15) we get by (9) of Lemma 6 for 1 < s <r —2

s—1

r—1
Ho(s) < (2r + 1)es” D ([T ) [ ") <

(do,dy ... dr) EX(Pe(s)) j=0 j=s+1

s—1
863T‘r sup efl(z:) (7‘ + 1)( Z H efdj )
z€Xy do=d—dy—---—d, j=0

r—s—2

TS SENNNS | T

0€0 homambymsmbp oy =0

As C > 8¢¥ R™1 sup e/1(*) we get by (2.4), (2.8), (4.10) and (4.11)
z€EXy

Hy(s) < CR(r+1)CR*CR™ ' = (r + 1)C°R" .

Analogously we get using C > 8eT R™1 SUPzexy ef1(2) C > 2,(2.4), (2.8), (4.10)



128 P. RAITH Isr. J. Math.

and (4.11)
a r—2
H,(0) <8e<" sup ¢/'® (r 4 1)(sup Z H 1)) <
=€Xy 9€0 homa by ermrbyg =0
CR(r+1)CR™! < (r +1)C*R",
r—2
H(r-1) <8e'r sup 1 (r 4 1)( Z ef4s )<

z€Xy

do=d—d;—-—d,_; j=0

CR(r+1)CR™ <(r+1)C*R",

B <25+ Y [ <

do=d—dy~--—d, j=0

C(r+1)CR" <(r+1)C*R".

Hence (4.16) gives H, < (r + 1)2C3R" for all ¢ € Ay, and by (4.14) we get
r(F(f2))" < (r +1)2C®R". Now (4.12) implies

r(F(f2)) < {/r F12C°R< Ry .
By (2.12) and (4.8) this gives

p(R(T), T, f) < p(R(T), T, f2) = log r(F(f2)) <
log Ry = max{p(R(T), T, f1),logr(G(f1))} + ¢
< max{p(R(T), T, ), log {(G(F))} + <.
|

COROLLARY 2.1: Let (T, f, Z) be a piecewise monotonic map of class W, such

that one of the assumptions of Lemma 2 holds, and suppose that
.1
p(R(T)vT, f) > lim _Sn(R(T)v f)
n—oo n

Then for every € > 0 there exists a 6§ > 0, such that (T, f,Z) is é-close to
(T, f, Z) with respect to the W'—topology implies
Ip(R(T))Ta f) - p(R(T),T, f)| <eg.

Proof: This is an easy consequence of Lemma 2, Theorem 1 and Theorem 2.
| |
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Now we want to give an example. Define Z := {(3, %),(%,1)}, define

Ta:-_—:{zz'—% forze[%,%],

4.
(4.17) 2-2z forzelil]

Then (T, Z) is a piecewise monotonic map of class E* and (T, 0, Z) is of class
W>. We have R(T) = {%}, p(R(T),T,0) = hwp(R(T),T) = 0,
Gg={31%", §+,1} with @ — b if and only if a,b € {37, %+}, and logr(G(0)) =
log2. For ¢ € (0, 3] set

(4.18) Tz:=Tz+¢ .

Then (T, Z) is e—close to (T, Z) in R, and (T,,0, 2) is e~close to (T,0,Z) in
W>=. We have R(T.) = [2 - ¢,2 + ¢] and p(R(T.), Te,0) = heop(R(T:), Tt) =
log 2 = log r(G(0)), which shows, that the topological pressure is not upper semi-
continuous in this case.

Theorem 2 generalizes Theorem 2 of (5], where a similar result is shown for
the topological entropy. Also Theorem 1 of [4], which gives a similar result for
the topological entropy in the case of a continuous piecewise monotonic map T,
can be easily deduced from Theorem 2. To calculate the upper bound of the
topological entropy given in [4] we apply Theorem 2 to (T, f, Z), where T and f

are continuous. Define

card {j € {0,1,...,n =1} : Tz EEI(T)}l

G1(f) := max{ - og 2+
(419) 1 n—1 ]
- E f(T7z): z € E4(T) is a point of period n} ,
Jj=0
where we set Gr(f) := —oo, if E1(T) contains no periodic points.

COROLLARY 2.2: Let (T, f, Z) be a piecewise monotonic map of class W°, which
satisfies that T and f are continuous on X. Then for every ¢ > 0 there exists a
& > 0, such that (T, £, Z~) is 6—close to (T, f, Z) with respect to the W°-topology
implies

p(R(T),T, ) < max{p(R(T), T, f),Gr(f)} +¢ .

Proof: By Theorem 2 it suffices to show logr(G(f)) = Gr(f), if logr(G(f)) >
p(R(T), T, f). The definition of (G, —) and the continuity of T and f imply that
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Tx(a) = n(b) and f(n(a)) = fz(a), if a,b € G and a — b. Hence (2.4) gives for
neN

n—1

NG = = sup ) I = =

bo=a—by—:--—b, j=0

ap Y en(Y f(Tin(a) =

3€Q poma—rby by =0
n—1

sup(exp(z f(T?n(a))))(card {bp =a — by — -+ = by}) =
j=0
n—1

sup (exp(}_ f(T7n(a)))) (20 HEM 2} TIHOEEDI)

i=0
Using (2.5) this implies log r(G(f)) = Gr(f). 1

Remark: The proof shows, that logr(G(f)) = Gr(f), if
logr(G(f)) > p(R(T), T, f) or Gr(f) > p(R(T), T, f).

5. Continuity of the Hausdorff dimension

In this section we shall use the results of the preceeding sections and of (7] to
prove continuity results about the Hausdorff dimension of R(T). Throughout
this section let (T, Z) be a piecewise monotonic map of class E!. Denote by
(Tz,T' z, 2) the completion of (T,T', Z) with respect to Z. If we set

(5.1) a:= limsupllog H |T' 2]71(b;)

n—oo N bo“’bl—' o

where the supremum is taken over all paths bp — b1 — -+ — b, of length n in
G, then using (2.4) and (2.5) we get for 0 < ¢, <t

(5-2) taa < logr(G(—t3 log|T'|)) < logr(G(—t1 log|T'|)) + (t2 —t1)a .

This gives, that either logr(G(—tlog|T'[])) > 0 for all t > 0 (we set ¢y :=
oo in this case) or there exists a to > 0 with logr(G(—tolog|T'|)) = 0 and
logr(G(—tlog|T'])) < 0 for all t > ¢y. Now set

(5.3) dr := min{ty,1} .
Define for t € R
(5.4) br(t) := p(R(T), T, —tlog T']) .
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LEMMA 7: Let (T, Z) be a piecewise monotonic map of class E'. Then br is

continuous and strictly decreasing, has a unique zero tg, and HD(R(T)) = tg.

Proof: By Lemma 9 of [7] R(T) satisfies the requirements of Theorem 2 of [7].
Lemma 3 of [7] gives, that br is continuous and strictly decreasing, and has a
unique zero tg. Now Theorem 2 of 7] shows HD(R(T)) = tg. |

THEOREM 3: Let (T, Z) be a piecewise monotonic map of class E*. Then for
every ¢ > 0 there exists a § > 0, such that (T, Z) is —close to (T, 2) with respect
to the R!-topology implies

HD(R(T)) — ¢ < HD(R(T)) < max{HD(R(T)),dr} + ¢ .

Proof: We show at first, that HD(R(T))—e < HD(R(T)), if (T, Z) is sufficiently
close to (T, Z). If HD(R(T')) = 0, this is trivial.

Suppose HD(R(T')) > 0. We can assume, that ¢ < HD(R(T')). Lemma 7 gives
br(tr —€) > 0. By (1.3) we get, that

lim %S,.(R(T), —tlog|T']) < 0 for allt >0,

as there exists a ¢ with (T7)' is piecewise continuous and i}r{:{ﬂ [(T?)|(z) > 1.
z€

Hence

Tim. %Sn(R(T), (tr — &)log [T']) < 0
< br(tn — &) = p(R(T), T, ~(tr — &) log |T"])-

By Theorem 1 there exists a & > 0, such that (T, Z) is §;—close to (T, Z) in R!
implies bj(tg — €) > 0. Now Lemma 7 gives HD(R(T)) — ¢ < HD(R(T)).

Now we show HD(R(T)) < max{HD(R(T)),dr} +¢, if (T, Z) is sufficiently
close to (T, Z). Set t; := max{HD(R(T)),dr}. If t; = 1 the result is trivially
satisfied.

Suppose t; < 1. We can suppose, that ¢ < 1 —t;. By Lemma 7 we get
br(t; + €) < 0, and by (5.2) and (5.3) we get logr(G(—(t: + ¢)log|T'|)) < 0.
Hence Theorem 2 gives, that there exists a é; > 0, such that (ff‘, Z~) is 8-
close to (T,Z) in R' implies b3(t; +¢) < 0. Now we get by Lemma 7, that
HD(R(T)) < max{HD(R(T)),dr} + .

If we set § := min{é;, 62}, this gives the desired result. 1
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CoROLLARY 3.1: Let (T, Z) be a piecewise monotonic map of class E', such
that one of the assumptions of Lemma 2 holds. Then for every € > 0 there exists
a é > 0, such that (f‘, Z) is 6—close to (T, Z) with respect to the R!-topology
implies

|HD(R(T)) - HD(R(T))| < ¢ .

Proof: Using (5.3), Lemma 2 and Lemma 7 we get dr < HD(R(T')). Hence the

result follows from Theorem 3. ]

Now we give an example. Let (T, Z) be defined as in (4.17). Then we have
HD(R(T)) = 0. As |T'(z)| = 2 for all z € (},2) U (2,1), we get for t € R that
log r(G(—tlog |T'|)) = (1 —t)log2. This implies dr = 1 by (5.3) (we have t; =1,
where tg is the quantity introduced before (5.3)). For € € (0, 1] let (T., Z) be
defined as in (4.18). Hence (T,, Z) is e—close to (T, 2) in R*. Furthermore
we have that HD(R(T,)) = 1, which shows that the Hausdorff dimension is not
upper semi-continuous in this case.

Finally we consider the case, where T is continuous and |T"| can be extended

to a continuous function on X. Set

card {j € {0,1,...,n -1} : Tiz € El(T)}

105 I(T") (=)
z € Ey(T) is a point of period n} ,

Dr := max{ og?2:

(5.5)

where we set Dp := 0, if E{(T) contains no periodic points. Observe that
if T is continuous and if |T'| can be extended to a continuous map on X, then
log [(T™) [(z) = X0, =0 ! log |T'|(T? z) exists for every periodic point z and for every
n € N. Furthermore the property inf.ex, [(T?)'|(z) > 1 for a ¢ € N implies
log |(T™)'|(x) > 0 for every z with period n.

COROLLARY 3.2: Let (T, Z) be a piecewise monotonic map of class E!, which
satisfies that T is continuous on X, and |T'| can be extended to a continuous
function on X. Then for every ¢ > 0 there exists a § > 0, such that (T,Z~) is
d—close to (T, Z) with respect to the R'~topology implies

HD(R(T)) — ¢ < HD(R(T)) < min{max{HD(R(T)), Dr},1} +¢ .

Proof: By Theorem 3 it suffices to show dr < Dy, if dr > HD(R(T)). By the
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proof of Corollary 2.2 we have for t € (HD(R(T)), o) that
k ¢ n—1 )
—_— ! = — _— ! ] M =
log r(G(—tlog |T'[)) max{n log 2 - E log |T'|(T’z) : z € P}

i=0
k t
max{;log2 - log |(T")'|(z) : € P},

where P is the set of all periodic points, which are contained in E1(T), n is the
period of z, and k := card {j € {0,1,...,n— 1} : T'z € E{(T)}. As there exists
a g € N with inf,eg(r) [(T?)'|(2) > 1, we get log|(T")'|(z) > 0 for every z € P.
For a fixed £ € P this gives that

§log2 - %log [(T™)|(z) <0 for all t > log 2.

k
log |(T")'|(=)
By (5.5) this implies log r(G(—tlog|T"|)) < 0 for all

t‘>max{1 :x € P} =Dr

__k
og [(T*)|(=)
and log r(G(—Drlog{T'})) = 0. Hence (5.3) gives dy <ty = Dr. |

Remark: The proof shows, that tg = Dr, if tg > HD(R(T')) or D7 > HD(R(T)).
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